384 research outputs found

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]∘GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]∘GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]∘GFORMULA[s]\circ \mathcal{G} on more than 1/2+Ξ΅1/2+\varepsilon fraction of inputs for s=o ⁣(n2(kβ‹…4kβ‹…R(k)(G)β‹…log⁑(n/Ξ΅)β‹…log⁑(1/Ξ΅))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]∘PTFkβˆ’1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(sβ‹…R(2)(G)β‹…log⁑(s/Ξ΅)β‹…log⁑(1/Ξ΅))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that Ξ΅\varepsilon-fools FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]∘LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2β‹…s1/4β‹…log⁑(n)β‹…log⁑(n/Ξ΅))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where Ρ≀1/n\varepsilon \leq 1/n. (3) There is a randomized 2nβˆ’t2^{n-t}-time #\#SAT algorithm for FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}, where t=Ξ©(nsβ‹…log⁑2(s)β‹…R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]∘XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/log⁑n)2^{O(n/\log n)}

    Bounded Depth Circuits with Weighted Symmetric Gates: Satisfiability, Lower Bounds and Compression

    Get PDF
    A Boolean function f:{0,1}^n -> {0,1} is weighted symmetric if there exist a function g: Z -> {0,1} and integers w_0, w_1, ..., w_n such that f(x_1, ...,x_n) = g(w_0+sum_{i=1}^n w_i x_i) holds. In this paper, we present algorithms for the circuit satisfiability problem of bounded depth circuits with AND, OR, NOT gates and a limited number of weighted symmetric gates. Our algorithms run in time super-polynomially faster than 2^n even when the number of gates is super-polynomial and the maximum weight of symmetric gates is nearly exponential. With an additional trick, we give an algorithm for the maximum satisfiability problem that runs in time poly(n^t)*2^{n-n^{1/O(t)}} for instances with n variables, O(n^t) clauses and arbitrary weights. To the best of our knowledge, this is the first moderately exponential time algorithm even for Max 2SAT instances with arbitrary weights. Through the analysis of our algorithms, we obtain average-case lower bounds and compression algorithms for such circuits and worst-case lower bounds for majority votes of such circuits, where all the lower bounds are against the generalized Andreev function. Our average-case lower bounds might be of independent interest in the sense that previous ones for similar circuits with arbitrary symmetric gates rely on communication complexity lower bounds while ours are based on the restriction method
    • …
    corecore