379 research outputs found

    Proactive TCP mechanism to improve Handover performance in Mobile Satellite and Terrestrial Networks

    Full text link
    Emerging standardization of Geo Mobile Radio (GMR-1) for satellite system is having strong resemblance to terrestrial GSM (Global System for Mobile communications) at the upper protocol layers and TCP (Transmission Control Protocol) is one of them. This space segment technology as well as terrestrial technology, is characterized by periodic variations in communication properties and coverage causing the termination of ongoing call as connections of Mobile Nodes (MN) alter stochastically. Although provisions are made to provide efficient communication infrastructure this hybrid space and terrestrial networks must ensure the end-to-end network performance so that MN can move seamlessly among these networks. However from connectivity point of view current TCP performance has not been engineered for mobility events in multi-radio MN. Traditionally, TCP has applied a set of congestion control algorithms (slow-start, congestion avoidance, fast retransmit, fast recovery) to probe the currently available bandwidth on the connection path. These algorithms need several round-trip times to find the correct transmission rate (i.e. congestion window), and adapt to sudden changes connectivity due to handover. While there are protocols to maintain the connection continuity on mobility events, such as Mobile IP (MIP) and Host Identity Protocol (HIP), TCP performance engineering has had less attention. TCP is implemented as a separate component in an operating system, and is therefore often unaware of the mobility events or the nature of multi-radios' communication. This paper aims to improve TCP communication performance in Mobile satellite and terrestrial networks.Comment: 5 pages, 2 figure

    Satellite Image Compression Using ROI Based EZW Algorithm

    Get PDF
    In all the fields that make use of the images in a large scale for the image applications there is need for the image compression process in order to minimize the size of the storage. Likewise in the marine field there is use of the images like satellite images for their communication purpose. So to make use of them we are proposing a new image compression technique for the compression of the satellite images by using the Region of Interest (ROI)based on the lossy image technique called the Embedded Zero-Tree Wavelet (EZW) algorithm for the compression. The performance of our method can be evaluated and analyzing the PSNR values of the output images

    Image hiding in audio file using chaotic method

    Get PDF
    In this paper, we propose an efficient image hiding method that combines image encryption and chaotic mapping to introduce adaptive data hiding for improving the security and robustness of image data hiding in cover audio. The feasibility of using chaotic maps to hide encrypted image in the high frequency band of the audio is investigated. The proposed method was based on hiding the image data in the noisiest part of the audio, which is the high frequency band that was extracted by the zero crossing filter. Six types of digital images were used, each of size fit the length of used audio, this to facilitate the process of hiding them among the audio samples. The input image was encrypted by a one-time pad method, then its bits were hidden in the audio by the chaotic map. The process of retrieving the image from the audio was in the opposite way, where the image data was extracted from the high frequency band of the audio file, and then the extracted image was decrypted to produce the retrieved image. Four qualitative metrics were used to evaluate the hiding method in two paths: the first depends on comparing the retrieved image with the original image, while the second depends on comparing the audio containing the image data with the original audio once, and another time by comparing the cover audio with the original audio. The results of the quality metrics proved the efficiency of the proposed method, and it showed a slight and unnoticed effect between the research materials, which indicates the success of the hiding process and the validity of the research path

    Run-Length Coding Algorithm Based Satellite Image Compression

    Get PDF
    Image compression is an application based on data compression of the digital images. Its main objective is to reduce the redundancy of the image data for storing and transmitting data in an easy way. In this system we are proposing a compression technique based on the Run-length coding algorithm based on satellite image compression. The Run-length coding algorithm is a part of the Lossless compression algorithm. The performance evolution can be done by calculating the PSNR values of the compressed images

    Satellite Image Compression Based On SPIHT Algorithm

    Get PDF
    In the domains that deal with a large scale image applications force the use of image compression in order to reduce the required storage. Due to the constrained bandwidth and storage capacity in the field of marine a new compression technique for the compression of the satellite images is proposed here. In our system, we are separating the region of Region of Interest (ROI) part from the original image. And this ROI images can be used for compression scheme by an algorithm known as the Set Partitioning in Hierarchical Trees (SPIHT) algorithm. The SPIHT algorithm is a part of the Lossless compression algorithm. The performance of our method can be done by calculating the PSNR values of the output images

    LSB Based Steganography Model for Medical Images

    Get PDF
    This paper presents a steganographic model in medical system using LSB method. The LSB scheme takes the first LSB bit of the gray scale image and first message bit from the message matrix (Patient information) and embeds the message into the original image. After insertion of first message bit, pixel location of image and message is incremented by one. This process continuous itself till the message length is not equal to zero. Different medical images are taken for experimental result. Image is passed from one doctor to another after embedding their respective prescription in it. The experiment is performed on the seven medical images and the result is obtained

    Narrowband AM interference cancellation for broadband multicarrier systems

    Get PDF
    We consider an overlay system where narrowband AM signals interfere with a broadband multicarrier system. To reduce the effect of the AM narrowband interference on the multicarrier system, we propose a low-complexity algorithm to estimate the AM narrowband interference. Analytical expressions for the performance of this estimator are derived and verified with simulations. The performance of this estimator, however, degrades when the number of interferers increases. To improve the algorithm, we adapt it such that the interferers are estimated in a successive way. The proposed estimators are able to produce accurate estimates of the frequencies, and track the time-varying amplitudes of the AM signals. The estimators can reduce the power of the AM signal to a level that is approximately 20 dB lower than the multicarrier power, independently of the AM signal power

    Hybrid information security system via combination of compression, cryptography, and image steganography

    Get PDF
    Today, the world is experiencing a new paradigm characterized by dynamism and rapid change due to revolutions that have gone through information and digital communication technologies, this raised many security and capacity concerns about information security transmitted via the Internet network. Cryptography and steganography are two of the most extensively that are used to ensure information security. Those techniques alone are not suitable for high security of information, so in this paper, we proposed a new system was proposed of hiding information within the image to optimize security and capacity. This system provides a sequence of steps by compressing the secret image using discrete wavelet transform (DWT) algorithm, then using the advanced encryption standard (AES) algorithm for encryption compressed data. The least significant bit (LSB) technique has been applied to hide the encrypted data. The results show that the proposed system is able to optimize the stego-image quality (PSNR value of 47.8 dB) and structural similarity index (SSIM value of 0.92). In addition, the results of the experiment proved that the combination of techniques maintains stego-image quality by 68%, improves system performance by 44%, and increases the size of secret data compared to using each technique alone. This study may contribute to solving the problem of the security and capacity of information when sent over the internet

    WAVELET BASED DATA HIDING OF DEM IN THE CONTEXT OF REALTIME 3D VISUALIZATION (Visualisation 3D Temps-Réel à Distance de MNT par Insertion de Données Cachées Basée Ondelettes)

    No full text
    The use of aerial photographs, satellite images, scanned maps and digital elevation models necessitates the setting up of strategies for the storage and visualization of these data. In order to obtain a three dimensional visualization it is necessary to drape the images, called textures, onto the terrain geometry, called Digital Elevation Model (DEM). Practically, all these information are stored in three different files: DEM, texture and position/projection of the data in a geo-referential system. In this paper we propose to stock all these information in a single file for the purpose of synchronization. For this we have developed a wavelet-based embedding method for hiding the data in a colored image. The texture images containing hidden DEM data can then be sent from the server to a client in order to effect 3D visualization of terrains. The embedding method is integrable with the JPEG2000 coder to accommodate compression and multi-resolution visualization. Résumé L'utilisation de photographies aériennes, d'images satellites, de cartes scannées et de modèles numériques de terrains amène à mettre en place des stratégies de stockage et de visualisation de ces données. Afin d'obtenir une visualisation en trois dimensions, il est nécessaire de lier ces images appelées textures avec la géométrie du terrain nommée Modèle Numérique de Terrain (MNT). Ces informations sont en pratiques stockées dans trois fichiers différents : MNT, texture, position et projection des données dans un système géo-référencé. Dans cet article, nous proposons de stocker toutes ces informations dans un seul fichier afin de les synchroniser. Nous avons développé pour cela une méthode d'insertion de données cachées basée ondelettes dans une image couleur. Les images de texture contenant les données MNT cachées peuvent ensuite être envoyées du serveur au client afin d'effectuer une visualisation 3D de terrains. Afin de combiner une visualisation en multirésolution et une compression, l'insertion des données cachées est intégrable dans le codeur JPEG 2000
    • …
    corecore