1,479 research outputs found

    Second order conic approximation for disassembly line design with joint probabilistic constraints

    Get PDF
    A problem of profit oriented disassembly line design and balancing with possible partial disassembly and presence of hazardous parts is studied. The objective is to design a production line providing a maximal revenue with balanced workload. Task times are assumed to be random variables with known normal probability distributions. The cycle time constraints are to be jointly satisfied with at least a predetermined probability level. An AND/OR graph is used to model the precedence relationships among tasks. Several lower and upper–bounding schemes are developed using second order cone programming and convex piecewise linear approximation. To show the relevance and applicability of the proposed approach, a set of instances from the literature are solved to optimality

    Modeling a Remanufacturing Reverse Logistics Planning Problem: Some Insights into Disruptive Technology Adoption

    Get PDF
    Remanufacturing is the process to restore the functionality of high-value end-of-life (EOL) products, which is considered a substantial link in reverse logistics systems for value recovery. However, due to the uncertainty of the reverse material fow, the planning of a remanufacturing reverse logistics system is complex. Furthermore, the increasing adoption of disruptive technologies in Industry 4.0/5.0, e.g., the Internet of things (IoT), smart robots, cloud-based digital twins, and additive manufacturing, has shown great potential for a smart paradigm transition of remanufacturing reverse logistics operations. In this paper, a new mixed-integer program is modeled for supporting several tactical decisions in remanufacturing reverse logistics, i.e., remanufacturing setups, production planning and inventory levels, core acquisition and transportation, and remanufacturing line balancing and utilization. The model is further extended by incorporating utilization-dependent nonlinear idle time cost constraints and stochastic takt time to accommodate diferent real-world scenarios. Through a set of numerical experiments, the infuences of diferent demand patterns and idle time constraints are revealed. The potential impacts of disruptive technology adoption in remanufacturing reverse logistics are also discussed from managerial perspectives, which may help remanufacturing companies with a smart and smooth transition in the Industry 4.0/5.0 era

    Collection-disassembly problem in reverse supply chain

    Get PDF
    The reverse supply chain and disassembly processes are getting more and more important for tackling the burden of waste electrical and electronic equipment. The disassembly's complexity and frequent manual operation makes this process relatively expensive compared to its potential profit. The collection of end-of-life product is also a big issue dealing with vehicle routing. Thus, the decisions taken for collection and disassembly of end-of-life products need to be optimised. In this work, an optimisation model is developed for incorporating these problems. Our experimental study shows joint optimisation of collection and disassembly with coordination between them improves the global performance of the reverse supply chain including lower total cost corresponding to the component demand satisfaction

    Modeling, design and scheduling of computer integrated manufacturing and demanufacturing systems

    Get PDF
    This doctoral dissertation work aims to provide a discrete-event system-based methodology for design, implementation, and operation of flexible and agile manufacturing and demanufacturing systems. After a review of the current academic and industrial activities in these fields, a Virtual Production Lines (VPLs) design methodology is proposed to facilitate a Manufacturing Execution System integrated with a shop floor system. A case study on a back-end semiconductor line is performed to demonstrate that the proposed methodology is effective to increase system throughput and decrease tardiness. An adaptive algorithm is proposed to deal with the machine failure and maintenance. To minimize the environmental impacts caused by end-of-life or faulty products, this research addresses the fundamental design and implementation issues of an integrated flexible demanufacturing system (IFDS). In virtue of the success of the VPL design and differences between disassembly and assembly, a systematic approach is developed for disassembly line design. This thesis presents a novel disassembly planning and demanufacturing scheduling method for such a system. Case studies on the disassembly of personal computers are performed illustrating how the proposed approaches work

    Design for manufacturing and assembly/disassembly: joint design of products and production systems

    Get PDF
    Design for Manufacturing, Assembly, and Disassembly is important in today’s production systems because if this aspect is not considered, it could lead to inefficient operations and excessive material usage, both of which have a significant impact on manufacturing cost and time. Attention to this topic is important in achieving the target standards of Industry 4.0 which is inclusive of material utilisation, manufacturing operations, machine utilisation, features selection of the products, and development of suitable interfaces with information communication technologies (ICT) and other evolving technologies. Design for manufacturing (DFM) and Design for Assembly (DFA) have been around since the 1980’s for rectifying and overcoming the difficulties and waste related to the manufacturing as well as assembly at the design stage. Furthermore, this domain includes a decision support system and knowledge base with manufacturing and design guidelines following the adoption of ICT. With this in mind, ‘Design for manufacturing and assembly/disassembly: Joint design of products and production systems’, a special issue has been conceived and its contents are elaborated in detail. In this paper, a background of the topics pertaining to DFM, DFA and related topics seen in today’s manufacturing systems are discussed. The accepted papers of this issue are categorised in multiple sections and their significant features are outlined

    Conception combinatoire des lignes de désassemblage sous incertitudes

    Get PDF
    This thesis is dedicated to the problem of disassembly line design in uncertain context. A disassembly linecan be represented as a succession of workstations where tasks are performed sequentially at each workstation.The design of such a product recovery system can be reduced to a combinatorial optimization problem which seeksa line configuration that optimizes certain objectives under technical, economical and environmental constraints.We begin by describing the principal product recovery activities especially disassembly. Then, after a literaturereview on the design of production lines under uncertainty of task processing times, we focus our study on the consideration of the disassembly task time uncertainties. Hence, we present three main models as well as the associatedsolution approaches. The first one is interested in minimizing the line stoppages caused by the task processing timeuncertainties. The second one seeks to guarantee an operational level closely related with the line speed. The goal of thethird model is to integrate the line design and sequencing problems. At last, the performances of the proposed solutionapproaches are presented by analyzing the optimization results on a set of instances of industrial size.Les travaux présentés dans ce manuscrit portent sur la conception des lignes de désassemblageen contexte incertain. Une ligne de désassemblage consiste en unesuccession de postes de travail où les tâches sont exécutées séquentiellement au niveau de chaque poste. La conception d'un tel système, de revalorisationdes produits en fin de vie, peut être ramenée à un problème d'optimisation combinatoire.Ce dernier cherche à obtenir une configuration permettant d'optimiser certains objectifs enrespectant des contraintes techniques, économiques et écologiques.Dans un premier temps, nous décrivons les activités principales de la revalorisation des produitsen fin de vie, en particulier le désassemblage. Puis, après présentation des travaux de la littératureportant sur la prise en compte des incertitudes des durées opératoires lors de la conception des lignesde production, nous nous focalisons sur l'étude des incertitudes des durées opératoires des tâches de désassemblage.Ainsi, nous présentons trois modélisations principales avec leurs approches de résolution.La première s'intéresse à la minimisation des arrêts de la ligne causés par les incertitudes des durées des opérationsde désassemblage. La deuxième cherche à garantir un niveau opérationnel de la ligne lié à sa cadence de fonctionnement.Le but de la troisième modélisation est l'intégration des problématiques de conception des ligneset de séquencement des tâches de désassemblage. Enfin, les performances des méthodes de résolutionproposées sont présentées en analysant les résultats d'optimisation sur un ensemble d'instances de taille industrielle

    Planning of aircraft fleet maintenance teams

    Get PDF
    This paper addresses a support information system for the planning of aircraft maintenance teams, assisting maintenance managers in delivering aircraft on time. The developed planning of aircraft maintenance teams is a computer application based on a mathematical programming problem written as a minimization one. The initial decision variables are positive integer variables specifying the allocation of available technicians by skills to maintenance teams. The objective function is a nonlinear function balancing the time spent and costs incurred with aircraft fleet maintenance. The data involves the technicians’ skills, the hours of work to perform maintenance tasks, the costs related to facilities, and the aircraft downtime cost. The realism of this planning entails random possibilities associated with maintenance workload data, and inference by a procedure of Monte Carlo simulation provides a proper set of workloads instead of going through all the possibilities. The based formalization is a nonlinear integer programming problem, converted into an equivalent pure linear integer programming problem, using a transformation from initial positive integer variables to Boolean ones. A case study addresses the use of this support information system for planning a team for aircraft maintenance of three lines under the uncertainty of workloads, and a discussion of results shows the serviceableness of the proposed support information system

    Distribution-Free Model for Ambulance Location Problem with Ambiguous Demand

    Get PDF
    Ambulance location problem is a key issue in Emergency Medical Service (EMS) system, which is to determine where to locate ambulances such that the emergency calls can be responded efficiently. Most related researches focus on deterministic problems or assume that the probability distribution of demand can be estimated. In practice, however, it is difficult to obtain perfect information on probability distribution. This paper investigates the ambulance location problem with partial demand information; i.e., only the mean and covariance matrix of the demands are known. The problem consists of determining base locations and the employment of ambulances, to minimize the total cost. A new distribution-free chance constrained model is proposed. Then two approximated mixed integer programming (MIP) formulations are developed to solve it. Finally, numerical experiments on benchmarks (Nickel et al., 2016) and 120 randomly generated instances are conducted, and computational results show that our proposed two formulations can ensure a high service level in a short time. Specifically, the second formulation takes less cost while guaranteeing an appropriate service level. Document type: Articl
    • …
    corecore