57,469 research outputs found

    An integrated architecture for shallow and deep processing

    Get PDF
    We present an architecture for the integration of shallow and deep NLP components which is aimed at flexible combination of different language technologies for a range of practical current and future applications. In particular, we describe the integration of a high-level HPSG parsing system with different high-performance shallow components, ranging from named entity recognition to chunk parsing and shallow clause recognition. The NLP components enrich a representation of natural language text with layers of new XML meta-information using a single shared data structure, called the text chart. We describe details of the integration methods, and show how information extraction and language checking applications for realworld German text benefit from a deep grammatical analysis

    Joint Entity Extraction and Assertion Detection for Clinical Text

    Full text link
    Negative medical findings are prevalent in clinical reports, yet discriminating them from positive findings remains a challenging task for information extraction. Most of the existing systems treat this task as a pipeline of two separate tasks, i.e., named entity recognition (NER) and rule-based negation detection. We consider this as a multi-task problem and present a novel end-to-end neural model to jointly extract entities and negations. We extend a standard hierarchical encoder-decoder NER model and first adopt a shared encoder followed by separate decoders for the two tasks. This architecture performs considerably better than the previous rule-based and machine learning-based systems. To overcome the problem of increased parameter size especially for low-resource settings, we propose the Conditional Softmax Shared Decoder architecture which achieves state-of-art results for NER and negation detection on the 2010 i2b2/VA challenge dataset and a proprietary de-identified clinical dataset.Comment: Accepted at the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019

    Corpora and evaluation tools for multilingual named entity grammar development

    Get PDF
    We present an effort for the development of multilingual named entity grammars in a unification-based finite-state formalism (SProUT). Following an extended version of the MUC7 standard, we have developed Named Entity Recognition grammars for German, Chinese, Japanese, French, Spanish, English, and Czech. The grammars recognize person names, organizations, geographical locations, currency, time and date expressions. Subgrammars and gazetteers are shared as much as possible for the grammars of the different languages. Multilingual corpora from the business domain are used for grammar development and evaluation. The annotation format (named entity and other linguistic information) is described. We present an evaluation tool which provides detailed statistics and diagnostics, allows for partial matching of annotations, and supports user-defined mappings between different annotation and grammar output formats

    Extracting adverse drug reactions and their context using sequence labelling ensembles in TAC2017

    Full text link
    Adverse drug reactions (ADRs) are unwanted or harmful effects experienced after the administration of a certain drug or a combination of drugs, presenting a challenge for drug development and drug administration. In this paper, we present a set of taggers for extracting adverse drug reactions and related entities, including factors, severity, negations, drug class and animal. The systems used a mix of rule-based, machine learning (CRF) and deep learning (BLSTM with word2vec embeddings) methodologies in order to annotate the data. The systems were submitted to adverse drug reaction shared task, organised during Text Analytics Conference in 2017 by National Institute for Standards and Technology, archiving F1-scores of 76.00 and 75.61 respectively.Comment: Paper describing submission for TAC ADR shared tas

    Named Entity Recognition in Twitter using Images and Text

    Full text link
    Named Entity Recognition (NER) is an important subtask of information extraction that seeks to locate and recognise named entities. Despite recent achievements, we still face limitations with correctly detecting and classifying entities, prominently in short and noisy text, such as Twitter. An important negative aspect in most of NER approaches is the high dependency on hand-crafted features and domain-specific knowledge, necessary to achieve state-of-the-art results. Thus, devising models to deal with such linguistically complex contexts is still challenging. In this paper, we propose a novel multi-level architecture that does not rely on any specific linguistic resource or encoded rule. Unlike traditional approaches, we use features extracted from images and text to classify named entities. Experimental tests against state-of-the-art NER for Twitter on the Ritter dataset present competitive results (0.59 F-measure), indicating that this approach may lead towards better NER models.Comment: The 3rd International Workshop on Natural Language Processing for Informal Text (NLPIT 2017), 8 page
    corecore