63 research outputs found

    High rank tensor and spherical harmonic models for diffusion MRI processing

    Get PDF
    Diffusion tensor imaging (DTI) is a non-invasive quantitative method of characterizing tissue micro-structure. Diffusion imaging attempts to characterize the manner by which the water molecules within a particular location move within a given amount of time. Measurement of the diffusion tensor (D) within a voxel allows a macroscopic voxel-averaged description of fiber structure, orientation and fully quantitative evaluation of the microstructural features of healthy and diseased tissue.;The rank two tensor model is incapable of resolving multiple fiber orientations within an individual voxel. This shortcoming of single tensor model stems from the fact that the tensor possesses only a single orientational maximum. Several authors reported this non-mono-exponential behavior for the diffusion-induced attenuation in brain tissue in water and N-Acetyl Aspartate (NAA) signals, that is why the Multi-Tensor, Higher Rank Tensor and Orientation Distribution Function (ODF) were introduced.;Using the higher rank tensor, we will propose a scheme for tensor field interpolation which is inspired by subdivision surfaces in computer graphics. The method applies to Cartesian tensors of all ranks and imposes smoothness on the interpolated field by constraining the divergence and curl of the tensor field. Results demonstrate that the subdivision scheme can better preserve anisotropicity and interpolate rotations than some other interpolation methods. As one of the most important applications of DTI, fiber tractography was implemented to study the shape geometry changes. Based on the divergence and curl measurement, we will introduce new scalar measures that are sensitive to behaviors such as fiber bending and fanning.;Based on the ODF analysis, a new anisotropy measure that has the ability to describe multi-fiber heterogeneity while remaining rotationally invariant, will be introduced, which is a problem with many other anisotropy measures defined using the ODF. The performance of this novel measure is demonstrated for data with varying Signal to Noise Ratio (SNR), and different material characteristics

    Reconstruction et description des fonctions de distribution d'orientation en imagerie de diffusion à haute résolution angulaire

    Get PDF
    This thesis concerns the reconstruction and description of orientation distribution functions (ODFs) in high angular resolution diffusion imaging (HARDI) such as q-ball imaging (QBI). QBI is used to analyze more accurately fiber structures (crossing, bending, fanning, etc.) in a voxel. In this field, the ODF reconstructed from QBI is widely used for resolving complex intravoxel fiber configuration problem. However, until now, the assessment of the characteristics or quality of ODFs remains mainly visual and qualitative, although the use of a few objective quality metrics is also reported that are directly borrowed from classical signal and image processing theory. At the same time, although some metrics such as generalized anisotropy (GA) and generalized fractional anisotropy (GFA) have been proposed for classifying intravoxel fiber configurations, the classification of the latters is still a problem. On the other hand, QBI often needs an important number of acquisitions (usually more than 60 directions) to compute accurately ODFs. So, reducing the quantity of QBI data (i.e. shortening acquisition time) while maintaining ODF quality is a real challenge. In this context, we have addressed the problems of how to reconstruct high-quality ODFs and assess their characteristics. We have proposed a new paradigm allowing describing the characteristics of ODFs more quantitatively. It consists of regarding an ODF as a general three-dimensional (3D) point cloud, projecting a 3D point cloud onto an angle-distance map (ADM), constructing an angle-distance matrix (ADMAT), and calculating morphological characteristics of the ODF such as length ratio, separability and uncertainty. In particular, a new metric, called PEAM (PEAnut Metric), which is based on computing the deviation of ODFs from a single fiber ODF represented by a peanut, was proposed and used to classify intravoxel fiber configurations. Several ODF reconstruction methods have also been compared using the proposed metrics. The results showed that the characteristics of 3D point clouds can be well assessed in a relatively complete and quantitative manner. Concerning the reconstruction of high-quality ODFs with reduced data, we have proposed two methods. The first method is based on interpolation by Delaunay triangulation and imposing constraints in both q-space and spatial space. The second method combines random gradient diffusion direction sampling, compressed sensing, resampling density increasing, and missing diffusion signal recovering. The results showed that the proposed missing diffusion signal recovering approaches enable us to obtain accurate ODFs with relatively fewer number of diffusion signals.Ce travail de thèse porte sur la reconstruction et la description des fonctions de distribution d'orientation (ODF) en imagerie de diffusion à haute résolution angulaire (HARDI) telle que l’imagerie par q-ball (QBI). Dans ce domaine, la fonction de distribution d’orientation (ODF) en QBI est largement utilisée pour étudier le problème de configuration complexe des fibres. Toutefois, jusqu’à présent, l’évaluation des caractéristiques ou de la qualité des ODFs reste essentiellement visuelle et qualitative, bien que l’utilisation de quelques mesures objectives de qualité ait également été reportée dans la littérature, qui sont directement empruntées de la théorie classique de traitement du signal et de l’image. En même temps, l’utilisation appropriée de ces mesures pour la classification des configurations des fibres reste toujours un problème. D'autre part, le QBI a souvent besoin d'un nombre important d’acquisitions pour calculer avec précision les ODFs. Ainsi, la réduction du temps d’acquisition des données QBI est un véritable défi. Dans ce contexte, nous avons abordé les problèmes de comment reconstruire des ODFs de haute qualité et évaluer leurs caractéristiques. Nous avons proposé un nouveau paradigme permettant de décrire les caractéristiques des ODFs de manière plus quantitative. Il consiste à regarder un ODF comme un nuage général de points tridimensionnels (3D), projeter ce nuage de points 3D sur un plan angle-distance (ADM), construire une matrice angle-distance (ADMAT), et calculer des caractéristiques morphologiques de l'ODF telles que le rapport de longueurs, la séparabilité et l'incertitude. En particulier, une nouvelle métrique, appelé PEAM (PEAnut Metric) et qui est basée sur le calcul de l'écart des ODFs par rapport à l’ODF (représenté par une forme arachide) d’une seule fibre, a été proposée et utilisée pour classifier des configurations intravoxel des fibres. Plusieurs méthodes de reconstruction des ODFs ont également été comparées en utilisant les paramètres proposés. Les résultats ont montré que les caractéristiques du nuage de points 3D peuvent être évaluées d'une manière relativement complète et quantitative. En ce qui concerne la reconstruction de l'ODF de haute qualité avec des données réduites, nous avons proposé deux méthodes. La première est basée sur une interpolation par triangulation de Delaunay et sur des contraintes imposées à la fois dans l’espace-q et dans l'espace spatial. La deuxième méthode combine l’échantillonnage aléatoire des directions de gradient de diffusion, le compressed sensing, l’augmentation de la densité de ré-échantillonnage, et la reconstruction des signaux de diffusion manquants. Les résultats ont montré que les approches de reconstruction des signaux de diffusion manquants proposées nous permettent d'obtenir des ODFs précis à partir d’un nombre relativement faible de signaux de diffusion

    Rational invariants of even ternary forms under the orthogonal group

    Get PDF
    In this article we determine a generating set of rational invariants of minimal cardinality for the action of the orthogonal group O3\mathrm{O}_3 on the space R[x,y,z]2d\mathbb{R}[x,y,z]_{2d} of ternary forms of even degree 2d2d. The construction relies on two key ingredients: On one hand, the Slice Lemma allows us to reduce the problem to dermining the invariants for the action on a subspace of the finite subgroup B3\mathrm{B}_3 of signed permutations. On the other hand, our construction relies in a fundamental way on specific bases of harmonic polynomials. These bases provide maps with prescribed B3\mathrm{B}_3-equivariance properties. Our explicit construction of these bases should be relevant well beyond the scope of this paper. The expression of the B3\mathrm{B}_3-invariants can then be given in a compact form as the composition of two equivariant maps. Instead of providing (cumbersome) explicit expressions for the O3\mathrm{O}_3-invariants, we provide efficient algorithms for their evaluation and rewriting. We also use the constructed B3\mathrm{B}_3-invariants to determine the O3\mathrm{O}_3-orbit locus and provide an algorithm for the inverse problem of finding an element in R[x,y,z]2d\mathbb{R}[x,y,z]_{2d} with prescribed values for its invariants. These are the computational issues relevant in brain imaging.Comment: v3 Changes: Reworked presentation of Neuroimaging application, refinement of Definition 3.1. To appear in "Foundations of Computational Mathematics

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:Rd⋊Sd−1→RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    The analysis and application of dynamic MRI contrasts to grape berry biology

    Get PDF
    Magnetic resonance imaging (MRI) is a powerful, non-invasive imaging tool. When MRI is employed in the study biological systems, the acquired images reflect different aspects of system morphology and/or physiology. This thesis explores the application of relaxation and diffusion MRI to the study of different biological aspects of the fruit of the common grape vine, Vitis vinifera L., a highly valued botanical species. The results of this investigation have put forth a number of contributions to this area of research. The studies within this thesis began with a necessary validation for the application of diffusion MRI techniques to the grape berry using simulated cellular geometries to determine how broad plant cells could potentially influence the accurate reconstruction of the grape berry morphology. The result of this validation will also prove useful for other wide geometry applications wider than 10 μm. Relaxation and diffusion MRI was also used to study changes to berry morphology resulting from berry development and ripening. This study provided a novel perspective on grape berry development and demonstrated that diffusion anisotropy patterns correlated with the microstructure of the major pericarp tissues of grape berries, including the exocarp, outer and inner mesocarp, seed interior, as well as microstructural variations across grape berry development. This study also provided further evidence that the inner mesocarp striation patterns observed in the spin-spin relaxation weighted images of previous studies arise due to variations in cell width across the striation bands. Diffusion MRI was employed to investigate the morphological and physiological changes to occur within grape berries during fruit split, a costly source of fruit loss in vineyards. This study revealed water uptake through splits in the berry epidermis will result in the loss of parenchyma cell vitality about these wounds. The amount of water left standing on the surface of split grape berries may hence be an important determinant of the cellular response of the fruit to this trauma, and the subsequent establishment of adventitious fruit pathogens. Additionally, paramagnetically enhanced spin-lattice relaxation MRI was used to undertake a novel examination of the diffusive transport of manganese across the berry pericarp. The results of this study shows that the transport of manganese is within the berry xylem influences manganese exiting of ‘downstream’ of the pedicel, and that cellular membranes affect the spatial distribution of manganese across the berry pericarp. Manganese proved to be an excellent tracer for these experiments, and future investigations making use of paramagnetically enhanced relaxation MRI, perhaps employing other paramagnetic materials such as iron or copper, could prove to be valuable in determining how botanical species transport and store these materials within sink organs

    Beyond fractional anisotropy: Extraction of bundle-specific structural metrics from crossing fiber models

    Get PDF
    Diffusion MRI (dMRI) measurements are used for inferring the microstructural properties of white matter and to reconstruct fiber pathways. Very often voxels contain complex fiber configurations comprising multiple bundles, rendering the simple diffusion tensor model unsuitable. Multi-compartment models deliver a convenient parameterization of the underlying complex fiber architecture, but pose challenges for fitting and model selection. Spherical deconvolution, in contrast, very economically produces a fiber orientation density function (fODF) without any explicit model assumptions. Since, however, the fODF is represented by spherical harmonics, a direct interpretation of the model parameters is impossible. Based on the fact that the fODF can often be interpreted as superposition of multiple peaks, each associated to one relatively coherent fiber population (bundle), we offer a solution that seeks to combine the advantages of both approaches: first the fiber configuration is modeled as fODF represented by spherical harmonics and then each of the peaks is parameterized separately in order to characterize the underlying bundle. In this work, the fODF peaks are approximated by Bingham distributions, capturing first and second-order statistics of the fiber orientations, from which we derive metrics for the parametric quantification of fiber bundles. We propose meaningful relationships between these measures and the underlying microstructural properties. We focus on metrics derived directly from properties of the Bingham distribution, such as peak length, peak direction, peak spread, integral over the peak, as well as a metric derived from the comparison of the largest peaks, which probes the complexity of the underlying microstructure. We compare these metrics to the conventionally used fractional anisotropy (FA) and show how they may help to increase the specificity of the characterization of microstructural properties. While metric relying on the first moments of the Bingham distributions provide relatively robust results, second-order metrics representing the peak spread are only meaningful, if the SNR is very high and no fiber crossings are present in the voxel

    Predictive Diagnosis of Alzheimer's Disease using Diffusion MRI

    Get PDF
    Age-related neurodegenerative diseases, including Alzheimer’s Disease (AD), are an increasing cause of concern for the world’s ageing population. The current consensus in the research community is that the main setbacks in the treatment of AD include the inability to diagnose it in its early stages and the lack of accurate stratification techniques for the prodromal stages of the disease and normal control (NC) subject groups. Numerous studies show that AD causes damage to the white matter microstructure in the brain. Commonly used techniques for diagnosing this disease include, neuropsychological assessments, genetics, proteomics, and image-based analysis. However, unlike these techniques, recent advances in Diffusion Magnetic Resonance Imaging (dMRI) analysis posits its sensitivity to the microstructural organization of cerebral white matter, and hence its applicability for early diagnosis of AD. Since tissue damage is reflected in the pattern of water diffusion in neural fibre structures, dMRI can be used to track disease-related changes in the brain. Contemporary dMRI approaches are broadly classified as being either region-based or tract-based. This thesis draws on the strengths of both these approaches by proposing an original extension of region-based methods to the simultaneous analysis of multiple brain regions. A predefined set of features is derived from dMRI data and used to compute the probabilistic distances between different brain regions. The resulting statistical associations can be modelled as an undirected and fully-connected graph encoding a unique brain connectivity pattern. Subsequently, the characteristics of this graph are used for the stratification of AD and NC subjects. Although the current work focuses on AD and NC subject populations, the perfect separability achieved between the two groups suggests the suitability of the technique for separating NC, AD, in addition to subjects in the prodromal stage of the disease, i.e., mild cognitive impairment (MCI)
    • …
    corecore