135 research outputs found

    A Rolling Window with Genetic Algorithm Approach to Sorting Aircraft for Automated Taxi Routing

    Get PDF
    With increasing demand for air travel and overloaded airport facilities, inefficient airport taxiing operations are a significant contributor to unnecessary fuel burn and a substantial source of pollution. Although taxiing is only a small part of a flight, aircraft engines are not optimised for taxiing speed and so contribute disproportionately to the overall fuel burn. Delays in taxiing also waste scarce airport resources and frustrate passengers. Consequently, reducing the time spent taxiing is an important investment. An exact algorithm for finding shortest paths based on A* allocates routes to aircraft that maintains aircraft at a safe distance apart, has been shown to yield efficient taxi routes. However, this approach depends on the order in which aircraft are chosen for allocating routes. Finding the right order in which to allocate routes to the aircraft is a combinatorial optimization problem in itself. We apply a rolling window approach incorporating a genetic algorithm for permutations to this problem, for real-world scenarios at three busy airports. This is compared to an exhaustive approach over small rolling windows, and the conventional first-come-firstserved ordering. We show that the GA is able to reduce overall taxi time with respect to the other approaches

    A Rolling Window with Genetic Algorithm Approach to Sorting Aircraft for Automated Taxi Routing

    Get PDF
    With increasing demand for air travel and overloaded airport facilities, inefficient airport taxiing operations are a significant contributor to unnecessary fuel burn and a substantial source of pollution. Although taxiing is only a small part of a flight, aircraft engines are not optimised for taxiing speed and so contribute disproportionately to the overall fuel burn. Delays in taxiing also waste scarce airport resources and frustrate passengers. Consequently, reducing the time spent taxiing is an important investment. An exact algorithm for finding shortest paths based on A* allocates routes to aircraft that maintains aircraft at a safe distance apart, has been shown to yield efficient taxi routes. However, this approach depends on the order in which aircraft are chosen for allocating routes. Finding the right order in which to allocate routes to the aircraft is a combinatorial optimization problem in itself. We apply a rolling window approach incorporating a genetic algorithm for permutations to this problem, for real-world scenarios at three busy airports. This is compared to an exhaustive approach over small rolling windows, and the conventional first-come-first-served ordering. We show that the GA is able to reduce overall taxi time with respect to the other approaches

    A chance-constrained programming model for airport ground movement optimisation with taxi time uncertainties

    Get PDF
    Airport ground movement remains a major bottleneck for air traffic management. Existing approaches have developed several routing allocation methods to address this problem, in which the taxi time traversing each segment of the taxiways is fixed. However, taxi time is typically difficult to estimate in advance, since its uncertainties are inherent in the airport ground movement optimisation due to various unmodelled and unpredictable factors. To address the optimisation of taxi time under uncertainty, we introduce a chance-constrained programming model with sample approximation, in which a set of scenarios is generated in accordance with taxi time distributions. A modified sequential quickest path searching algorithm with local heuristic is then designed to minimise the entire taxi time. Working with real-world data at an international airport, we compare our proposed method with the state-of-the-art algorithms. Extensive simulations indicate that our proposed method efficiently allocates routes with smaller taxiing time, as well as fewer aircraft stops during the taxiing process

    A chance-constrained programming model for airport ground movement optimisation with taxi time uncertainties

    Get PDF
    Airport ground movement remains a major bottleneck for air traffic management. Existing approaches have developed several routing allocation methods to address this problem, in which the taxi time traversing each segment of the taxiways is fixed. However, taxi time is typically difficult to estimate in advance, since its uncertainties are inherent in the airport ground movement optimisation due to various unmodelled and unpredictable factors. To address the optimisation of taxi time under uncertainty, we introduce a chance-constrained programming model with sample approximation, in which a set of scenarios is generated in accordance with taxi time distributions. A modified sequential quickest path searching algorithm with local heuristic is then designed to minimise the entire taxi time. Working with real-world data at an international airport, we compare our proposed method with the state-of-the-art algorithms. Extensive simulations indicate that our proposed method efficiently allocates routes with smaller taxiing time, as well as fewer aircraft stops during the taxiing process

    Multi-objective routing and scheduling for airport ground movement

    Get PDF
    Recent research on airport ground movement introduced an Active Routing framework to support multi-objective trajectory-based operations. This results in edges in the airport taxiway graph having multiple costs such as taxi time, fuel consumption and emissions. In such a graph, multiple edges exist between two nodes reflecting different trade-offs among the multiple costs. Aircraft will have to choose the most efficient edge from multiple edges in order to traverse from one node to another respecting various operational constraints. In this paper, we introduce a multi-objective routing and scheduling algorithm based on the enumerative approach that can be used to solve such a multi-objective multi-graph problem. Results using the proposed algorithm for a range of international airports are presented. Compared with other routing and scheduling algorithms, the proposed algorithm can find a representative set of optimal or near optimal solutions in a single run when the sequence of aircraft is fixed. In order to accelerate the search, heuristic functions and a preference-based approach are introduced. We analyse the performance of different approaches and discuss how the structure of the multi-graph affects computational complexity and quality of solutions

    Conflict-free routing of multi-stop warehouse trucks

    Get PDF
    The recent interest in greater vehicular autonomy for factory and warehouse automation has stimulated research in conflict-free routing: a challenging network routing problem in which vehicles may not pass each other. Motivated by a real-world case study, we consider one such application: truck movements in a tightly constrained warehouse. We propose an extension of an existing conflict-free routing algorithm to consider multiple stopping points per route. A high level metaheuristic is applied to determine the route construction and assignment of vehicles to routes

    Enhancing decision support systems for airport ground movement

    Get PDF
    With the expected continued increases in air transportation, the mitigation of the consequent delays and environmental effects is becoming more and more important, requiring increasingly sophisticated approaches for airside airport operations. The ground movement problem forms the link between other airside problems at an airport, such as arrival sequencing, departure sequencing, gate/stand allocation and stand holding. The purpose of this thesis is to contribute to airport ground movement research through obtaining a better understanding of the problem and producing new models and algorithms for three sub-problems. Firstly, many stakeholders at an airport can benefit from more accurate taxi time predictions. This thesis focuses upon this aim by analysing the important factors affecting taxi times for arrivals and departures and by comparing different regression models to analyse which one performs the best for this particular task. It was found that incorporating the information of the airport layout could significantly improve the accuracy and that a TSK fuzzy rule-based system outperformed other approaches. Secondly, a fast and flexible decision support system is introduced which can help ground controllers in an airport tower to make better routing and scheduling decisions and can also absorb as much of the waiting time as possible for departures at the gate/stand, to reduce the fuel burn and environmental impact. The results show potential maximum savings in total taxi time of about 30.3%, compared to the actual performance at the airport. Thirdly, a new research direction is explored which analyses the trade-off between taxi time and fuel consumption during taxiing. A sophisticated new model is presented to make such an analysis possible. Furthermore, this research provides the basis for integrating the ground movement problem with other airport operations. Datasets from Zurich Airport, Stockholm-Arlanda Airport, London Heathrow Airport and Hartsfield-Jackson Atlanta International Airport were utilised to test these sub-problems

    Integrated and joint optimisation of runway-taxiway-apron operations on airport surface

    Get PDF
    Airports are the main bottlenecks in the Air Traffic Management (ATM) system. The predicted 84% increase in global air traffic in the next two decades has rendered the improvement of airport operational efficiency a key issue in ATM. Although the operations on runways, taxiways, and aprons are highly interconnected and interdependent, the current practice is not integrated and piecemeal, and overly relies on the experience of air traffic controllers and stand allocators to manage operations, which has resulted in sub-optimal performance of the airport surface in terms of operational efficiency, capacity, and safety. This thesis proposes a mixed qualitative-quantitative methodology for integrated and joint optimisation of runways, taxiways, and aprons, aiming to improve the efficiency of airport surface operations by integrating the operations of all three resources and optimising their coordination. This is achieved through a two-stage optimisation procedure: (1) the Integrated Apron and Runway Assignment (IARA) model, which optimises the apron and runway allocations for individual aircraft on a pre-tactical level, and (2) the Integrated Dynamic Routing and Off-block (IDRO) model, which generates taxiing routes and off-block timing decisions for aircraft on an operational (real-time) level. This two-stage procedure considers the interdependencies of the operations of different airport resources, detailed network configurations, air traffic flow characteristics, and operational rules and constraints. The proposed framework is implemented and assessed in a case study at Beijing Capital International Airport. Compared to the current operations, the proposed apron-runway assignment reduces total taxiing distance, average taxiing time, taxiing conflicts, runway queuing time and fuel consumption respectively by 15.5%, 15.28%, 45.1%, [58.7%, 35.3%, 16%] (RWY01, RWY36R, RWY36L) and 6.6%; gated assignment is increased by 11.8%. The operational feasibility of this proposed framework is further validated qualitatively by subject matter experts (SMEs). The potential impact of the integrated apron-runway-taxiway operation is explored with a discussion of its real-world implementation issues and recommendations for industrial and academic practice.Open Acces

    Enhancing decision support systems for airport ground movement

    Get PDF
    With the expected continued increases in air transportation, the mitigation of the consequent delays and environmental effects is becoming more and more important, requiring increasingly sophisticated approaches for airside airport operations. The ground movement problem forms the link between other airside problems at an airport, such as arrival sequencing, departure sequencing, gate/stand allocation and stand holding. The purpose of this thesis is to contribute to airport ground movement research through obtaining a better understanding of the problem and producing new models and algorithms for three sub-problems. Firstly, many stakeholders at an airport can benefit from more accurate taxi time predictions. This thesis focuses upon this aim by analysing the important factors affecting taxi times for arrivals and departures and by comparing different regression models to analyse which one performs the best for this particular task. It was found that incorporating the information of the airport layout could significantly improve the accuracy and that a TSK fuzzy rule-based system outperformed other approaches. Secondly, a fast and flexible decision support system is introduced which can help ground controllers in an airport tower to make better routing and scheduling decisions and can also absorb as much of the waiting time as possible for departures at the gate/stand, to reduce the fuel burn and environmental impact. The results show potential maximum savings in total taxi time of about 30.3%, compared to the actual performance at the airport. Thirdly, a new research direction is explored which analyses the trade-off between taxi time and fuel consumption during taxiing. A sophisticated new model is presented to make such an analysis possible. Furthermore, this research provides the basis for integrating the ground movement problem with other airport operations. Datasets from Zurich Airport, Stockholm-Arlanda Airport, London Heathrow Airport and Hartsfield-Jackson Atlanta International Airport were utilised to test these sub-problems

    Allocation of Ground Handling Resources at Copenhagen Airport

    Get PDF
    corecore