60 research outputs found

    Medical image : ROI and RONI definition using fuzzy logic

    Get PDF
    This thesis discusses on the edge detection in fuzzy logic before medical image watermarking. Normally most of the researcher defined the ROT and RON! in the medical image manually. This research will be proposed that the ROl and ROM in the medical image can be defined automatically by using fuzzy logic. There are rules of inference in the FIS which will affect the relationship between the different variables of a fuzzy system input variable and fuzzy output. The images will be used to process are ultrasound, magnetic resonance imaging, computed tomography etc. Firstly, the area of interest (ROl) of the particular ultrasound image will be determined using fuzzy logic. 2x2 pixel window is used to determine whether the pixel is black, white or an edge. Then, we definitely know that which is the ROl and ROM in the ultrasound image by determining the edge using FIS. Thus, this will help doctor on determining the ROT which could be faster than doctor determined it one by one. Computational system should implement widely due to the increasing of medical image. After that, it will proceed with embed the watermark on the ROM by using least significant bit (LSB) technique or other techniques so that it can help in preserve imperceptibility of the watermarked image

    A new Edge Detector Based on Parametric Surface Model: Regression Surface Descriptor

    Full text link
    In this paper we present a new methodology for edge detection in digital images. The first originality of the proposed method is to consider image content as a parametric surface. Then, an original parametric local model of this surface representing image content is proposed. The few parameters involved in the proposed model are shown to be very sensitive to discontinuities in surface which correspond to edges in image content. This naturally leads to the design of an efficient edge detector. Moreover, a thorough analysis of the proposed model also allows us to explain how these parameters can be used to obtain edge descriptors such as orientations and curvatures. In practice, the proposed methodology offers two main advantages. First, it has high customization possibilities in order to be adjusted to a wide range of different problems, from coarse to fine scale edge detection. Second, it is very robust to blurring process and additive noise. Numerical results are presented to emphasis these properties and to confirm efficiency of the proposed method through a comparative study with other edge detectors.Comment: 21 pages, 13 figures and 2 table

    Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment

    Full text link
    [EN] Due to large volume and high variability of editing tools, protecting multimedia contents, and ensuring their privacy and authenticity has become an increasingly important issue in cyber-physical security of industrial environments, especially industrial surveillance. The approaches authenticating images using their principle content emerge as popular authentication techniques in industrial video surveillance applications. But maintaining a good tradeoff between perceptual robustness and discriminations is the key research challenge in image hashing approaches. In this paper, a robust image hashing method is proposed for efficient authentication of keyframes extracted from surveillance video data. A novel feature extraction strategy is employed in the proposed image hashing approach for authentication by extracting two important features: the positions of rich and nonzero low edge blocks and the dominant discrete cosine transform (DCT) coefficients of the corresponding rich edge blocks, keeping the computational cost at minimum. Extensive experiments conducted from different perspectives suggest that the proposed approach provides a trustworthy and secure way of multimedia data transmission over surveillance networks. Further, the results vindicate the suitability of our proposal for real-time authentication and embedded security in smart industrial applications compared to state-of-the-art methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61976120, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20191445, in part by the Six Talent Peaks Project of Jiangsu Province under Grant XYDXXJS-048, and sponsored by Qing Lan Project of Jiangsu Province, China.Sajjad, M.; Ul Haq, I.; Lloret, J.; Ding, W.; Muhammad, K. (2019). Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment. IEEE Transactions on Industrial Informatics. 15(12):6541-6550. https://doi.org/10.1109/TII.2019.2921652S65416550151

    Image Hash Minimization for Tamper Detection

    Full text link
    Tamper detection using image hash is a very common problem of modern days. Several research and advancements have already been done to address this problem. However, most of the existing methods lack the accuracy of tamper detection when the tampered area is low, as well as requiring long image hashes. In this paper, we propose a novel method objectively to minimize the hash length while enhancing the performance at low tampered area.Comment: Published at the 9th International Conference on Advances in Pattern Recognition, 201
    • …
    corecore