17,419 research outputs found

    Design and practical implementation of a fractional order proportional integral controller (FOPI) for a poorly damped fractional order process with time delay

    No full text
    One of the most popular tuning procedures for the development of fractional order controllers is by imposing frequency domain constraints such as gain crossover frequency, phase margin and iso-damping properties. The present study extends the frequency domain tuning methodology to a generalized range of fractional order processes based on second order plus time delay (SOPDT) models. A fractional order PI controller is tuned for a real process that exhibits poorly damped dynamics characterized in terms of a fractional order transfer function with time delay. The obtained controller is validated on the experimental platform by analyzing staircase reference tracking, input disturbance rejection and robustness to process uncertainties. The paper focuses around the tuning methodology as well as the fractional order modeling of the process' dynamics

    Robust scheduled control of longitudinal flight with handling quality satisfaction

    Get PDF
    Classic flight control systems are still widely used in the industry because of acquired experience and good understanding of their structure. Nevertheless, with more stringent constraints, it becomes difficult to easily fulfil all the criteria with these classic control laws. On the other hand, modern methods can handle many constraints but fail to produce low order controllers. The following methodology proposed in this paper addresses both classic and modern flight control issues, to offer a solution that leverages the strengths of both approaches. First, an H∞ synthesis is performed in order to get controllers which satisfy handling qualities and are robust withrespect to mass and centre of gravity variations. These controllers are then reduced and structured by using robust modal control techniques. In conclusion, a self-scheduling technique is described that will schedule these controllers over the entire flight envelope

    Dynamics estimation and generalized tuning of stationary frame current controller for grid-tied power converters

    Get PDF
    The integration of AC-DC power converters to manage the connection of generation to the grid has increased exponentially over the last years. PV or wind generation plants are one of the main applications showing this trend. High power converters are increasingly installed for integrating the renewables in a larger scale. The control design for these converters becomes more challenging due to the reduced control bandwidth and increased complexity in the grid connection filter. A generalized and optimized control tuning approach for converters becomes more favored. This paper proposes an algorithm for estimating the dynamic performance of the stationary frame current controllers, and based on it a generalized and optimized tuning approach is developed. The experience-based specifications of the tuning inputs are not necessary through the tuning approach. Simulation and experimental results in different scenarios are shown to evaluate the proposal.Peer ReviewedPostprint (published version
    corecore