1,319 research outputs found

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios

    Performance of 3D PPN against arbitrarily maneuvering target for homing phase

    Get PDF
    The performance analysis of the 3-D pure proportional navigation (PPN) guidance law was traditionally conducted by considering the cross-coupling effect of two independent 2-D PPN laws in the pitch and yaw planes. This could increase the complexity of the analysis and lead to conservative analysis results, especially when the target has maneuverability. To mitigate this issue, this article theoretically analyzes the performance of 3-D PPN directly on a rotating engagement plane using a Lyapunov-like approach. Considering practical issues, the analysis includes not only capturability, but also upper-bounds of heading error, line-of-sight rate, commanded acceleration, and closing speed. The analysis results obtained are also demonstrated by using numerical simulation examples. Compared to the previous studies providing the least conservative results, the analysis procedure is significantly simplified and the results are proven to be more practical and less conservativ
    • …
    corecore