14,713 research outputs found

    Projected Estimators for Robust Semi-supervised Classification

    Get PDF
    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Using a projection of the supervised estimate onto a set of constraints imposed by the unlabeled data, we find we can safely improve over the supervised solution in terms of this quadratic loss. Unlike other approaches to semi-supervised learning, the procedure does not rely on assumptions that are not intrinsic to the classifier at hand. It is theoretically demonstrated that, measured on the labeled and unlabeled training data, this semi-supervised procedure never gives a lower quadratic loss than the supervised alternative. To our knowledge this is the first approach that offers such strong, albeit conservative, guarantees for improvement over the supervised solution. The characteristics of our approach are explicated using benchmark datasets to further understand the similarities and differences between the quadratic loss criterion used in the theoretical results and the classification accuracy often considered in practice.Comment: 13 pages, 2 figures, 1 tabl

    A spatially distributed model for foreground segmentation

    Get PDF
    Foreground segmentation is a fundamental first processing stage for vision systems which monitor real-world activity. In this paper we consider the problem of achieving robust segmentation in scenes where the appearance of the background varies unpredictably over time. Variations may be caused by processes such as moving water, or foliage moved by wind, and typically degrade the performance of standard per-pixel background models. Our proposed approach addresses this problem by modeling homogeneous regions of scene pixels as an adaptive mixture of Gaussians in color and space. Model components are used to represent both the scene background and moving foreground objects. Newly observed pixel values are probabilistically classified, such that the spatial variance of the model components supports correct classification even when the background appearance is significantly distorted. We evaluate our method over several challenging video sequences, and compare our results with both per-pixel and Markov Random Field based models. Our results show the effectiveness of our approach in reducing incorrect classifications
    corecore