34 research outputs found

    Learning Iterative Neural Optimizers for Image Steganography

    Full text link
    Image steganography is the process of concealing secret information in images through imperceptible changes. Recent work has formulated this task as a classic constrained optimization problem. In this paper, we argue that image steganography is inherently performed on the (elusive) manifold of natural images, and propose an iterative neural network trained to perform the optimization steps. In contrast to classical optimization methods like L-BFGS or projected gradient descent, we train the neural network to also stay close to the manifold of natural images throughout the optimization. We show that our learned neural optimization is faster and more reliable than classical optimization approaches. In comparison to previous state-of-the-art encoder-decoder-based steganography methods, it reduces the recovery error rate by multiple orders of magnitude and achieves zero error up to 3 bits per pixel (bpp) without the need for error-correcting codes.Comment: International Conference on Learning Representations (ICLR) 202

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Robust steganographic techniques for secure biometric-based remote authentication

    Get PDF
    Biometrics are widely accepted as the most reliable proof of identity, entitlement to services, and for crime-related forensics. Using biometrics for remote authentication is becoming an essential requirement for the development of knowledge-based economy in the digital age. Ensuring security and integrity of the biometric data or templates is critical to the success of deployment especially because once the data compromised the whole authentication system is compromised with serious consequences for identity theft, fraud as well as loss of privacy. Protecting biometric data whether stored in databases or transmitted over an open network channel is a serious challenge and cryptography may not be the answer. The main premise of this thesis is that Digital Steganography can provide an alternative security solutions that can be exploited to deal with the biometric transmission problem. The main objective of the thesis is to design, develop and test steganographic tools to support remote biometric authentication. We focus on investigating the selection of biometrics feature representations suitable for hiding in natural cover images and designing steganography systems that are specific for hiding such biometric data rather than being suitable for general purpose. The embedding schemes are expected to have high security characteristics resistant to several types of steganalysis tools and maintain accuracy of recognition post embedding. We shall limit our investigations to embedding face biometrics, but the same challenges and approaches should help in developing similar embedding schemes for other biometrics. To achieve this our investigations and proposals are done in different directions which explain in the rest of this section. Reviewing the literature on the state-of-art in steganography has revealed a rich source of theoretical work and creative approaches that have helped generate a variety of embedding schemes as well as steganalysis tools but almost all focused on embedding random looking secrets. The review greatly helped in identifying the main challenges in the field and the main criteria for success in terms of difficult to reconcile requirements on embedding capacity, efficiency of embedding, robustness against steganalysis attacks, and stego image quality. On the biometrics front the review revealed another rich source of different face biometric feature vectors. The review helped shaping our primary objectives as (1) identifying a binarised face feature factor with high discriminating power that is susceptible to embedding in images, (2) develop a special purpose content-based steganography schemes that can benefit from the well-defined structure of the face biometric data in the embedding procedure while preserving accuracy without leaking information about the source biometric data, and (3) conduct sufficient sets of experiments to test the performance of the developed schemes, highlight the advantages as well as limitations, if any, of the developed system with regards to the above mentioned criteria. We argue that the well-known LBP histogram face biometric scheme satisfies the desired properties and we demonstrate that our new more efficient wavelet based versions called LBPH patterns is much more compact and has improved accuracy. In fact the wavelet version schemes reduce the number of features by 22% to 72% of the original version of LBP scheme guaranteeing better invisibility post embedding. We shall then develop 2 steganographic schemes. The first is the LSB-witness is a general purpose scheme that avoids changing the LSB-plane guaranteeing robustness against targeted steganalysis tools, but establish the viability of using steganography for remote biometric-based recognition. However, it may modify the 2nd LSB of cover pixels as a witness for the presence of the secret bits in the 1st LSB and thereby has some disadvantages with regards to the stego image quality. Our search for a new scheme that exploits the structure of the secret face LBPH patterns for improved stego image quality has led to the development of the first content-based steganography scheme. Embedding is guided by searching for similarities between the LBPH patterns and the structure of the cover image LSB bit-planes partitioned into 8-bit or 4-bit patterns. We shall demonstrate the excellent benefits of using content-based embedding scheme in terms of improved stego image quality, greatly reduced payload, reduced lower bound on optimal embedding efficiency, robustness against all targeted steganalysis tools. Unfortunately our scheme was not robust against the blind or universal SRM steganalysis tool. However we demonstrated robustness against SRM at low payload when our scheme was modified by restricting embedding to edge and textured pixels. The low payload in this case is sufficient to embed a secret full face LBPH patterns. Our work opens new exciting opportunities to build successful real applications of content-based steganography and presents plenty of research challenges

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains
    corecore