3,135 research outputs found

    Spatio-Temporal Pyramid Matching for Sports Videos

    Get PDF
    In this paper, we address the problem of querying video shots based on content-based matching. Our proposed system automatically partitions a video stream into video shots that maintain continuous movements of objects. Finding video shots of the same category is not an easy task because objects in a video shot change their locations over time. Our spatio-temporal pyramid matching (STPM) is the modified spatial pyramid matching (SPM) [15], which considers temporal information in conjunction with spatial locations to match objects in video shots. In addition, we model the mathematical condition in which temporal information contributes to match video shots. In order to improve the matching performance, dynamic features including movements of objects are considered in addition to static features such as edges of objects. In our experiments, several methods based on different feature sets and matching methods are compared, and our spatio-temporal pyramid matching performed better than existing methods in video matching for sports videos. 1

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    Multimodal framework based on audio‐visual features for summarisation of cricket videos

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166171/1/ipr2bf02094.pd

    Audiovisual processing for sports-video summarisation technology

    Get PDF
    In this thesis a novel audiovisual feature-based scheme is proposed for the automatic summarization of sports-video content The scope of operability of the scheme is designed to encompass the wide variety o f sports genres that come under the description ‘field-sports’. Given the assumption that, in terms of conveying the narrative of a field-sports-video, score-update events constitute the most significant moments, it is proposed that their detection should thus yield a favourable summarisation solution. To this end, a generic methodology is proposed for the automatic identification of score-update events in field-sports-video content. The scheme is based on the development of robust extractors for a set of critical features, which are shown to reliably indicate their locations. The evidence gathered by the feature extractors is combined and analysed using a Support Vector Machine (SVM), which performs the event detection process. An SVM is chosen on the basis that its underlying technology represents an implementation of the latest generation of machine learning algorithms, based on the recent advances in statistical learning. Effectively, an SVM offers a solution to optimising the classification performance of a decision hypothesis, inferred from a given set of training data. Via a learning phase that utilizes a 90-hour field-sports-video trainmg-corpus, the SVM infers a score-update event model by observing patterns in the extracted feature evidence. Using a similar but distinct 90-hour evaluation corpus, the effectiveness of this model is then tested genencally across multiple genres of fieldsports- video including soccer, rugby, field hockey, hurling, and Gaelic football. The results suggest that in terms o f the summarization task, both high event retrieval and content rejection statistics are achievable

    Grounding language in events

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 137-142).Broadcast video and virtual environments are just two of the growing number of domains in which language is embedded in multiple modalities of rich non-linguistic information. Applications for such multimodal domains are often based on traditional natural language processing techniques that ignore the connection between words and the non-linguistic context in which they are used. This thesis describes a methodology for representing these connections in models which ground the meaning of words in representations of events. Incorporating these grounded language models with text-based techniques significantly improves the performance of three multimodal applications: natural language understanding in videogames, sports video search and automatic speech recognition. Two approaches to representing the structure of events are presented and used to model the meaning of words. In the domain of virtual game worlds, a hand-designed hierarchical behavior grammar is used to explicitly represent all the various actions that an agent can take in a virtual world. This grammar is used to interpret events by parsing sequences of observed actions in order to generate hierarchical event structures. In the noisier and more open -ended domain of broadcast sports video, hierarchical temporal patterns are automatically mined from large corpora of unlabeled video data. The structure of events in video is represented by vectors of these hierarchical patterns.(cont.) Grounded language models are encoded using Hierarchical Bayesian models to represent the probability of words given elements of these event structures. These grounded language models are used to incorporate non-linguistic information into text-based approaches to multimodal applications. In the virtual game domain, this non-linguistic information improves natural language understanding for a virtual agent by nearly 10% and cuts in half the negative effects of noise caused by automatic speech recognition. For broadcast video of baseball and American football, video search systems that incorporate grounded language models are shown to perform up to 33% better than text-based systems. Further, systems for recognizing speech in baseball video that use grounded language models show 25% greater word accuracy than traditional systems.by Michael Ben Fleischman.Ph.D

    Human-machine cooperation in large-scale multimedia retrieval : a survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF
    corecore