28 research outputs found

    Multiple Parallel Concatenated Gallager Codes and Their Applications

    Get PDF
    Due to the increasing demand of high data rate of modern wireless communications, there is a significant interest in error control coding. It now plays a significant role in digital communication systems in order to overcome the weaknesses in communication channels. This thesis presents a comprehensive investigation of a class of error control codes known as Multiple Parallel Concatenated Gallager Codes (MPCGCs) obtained by the parallel concatenation of well-designed LDPC codes. MPCGCs are constructed by breaking a long and high complexity of conventional single LDPC code into three or four smaller and lower complexity LDPC codes. This design of MPCGCs is simplified as the option of selecting the component codes completely at random based on a single parameter of Mean Column Weight (MCW). MPCGCs offer flexibility and scope for improving coding performance in theoretical and practical implementation. The performance of MPCGCs is explored by evaluating these codes for both AWGN and flat Rayleigh fading channels and investigating the puncturing of these codes by a proposed novel and efficient puncturing methods for improving the coding performance. Another investigating in the deployment of MPCGCs by enhancing the performance of WiMAX system. The bit error performances are compared and the results confirm that the proposed MPCGCs-WiMAX based IEEE 802.16 standard physical layer system provides better gain compared to the single conventional LDPC-WiMAX system. The incorporation of Quasi-Cyclic QC-LDPC codes in the MPCGC structure (called QC-MPCGC) is shown to improve the overall BER performance of MPCGCs with reduced overall decoding complexity and improved flexibility by using Layered belief propagation decoding instead of the sum-product algorithm (SPA). A proposed MIMO-MPCGC structure with both a 2X2 MIMO and 2X4 MIMO configurations is developed in this thesis and shown to improve the BER performance over fading channels over the conventional LDPC structure

    Constant Envelope DCT- and FFT- based Multicarrier Systems

    Get PDF
    Discrete Cosine Transform (DCT)- and Fast Fourier Transform (FFT)- based Orthogonal Frequency Division Multiplexing (OFDM) systems with a variety of angle modulations are considered for data transmission. These modulations are used with the purpose of achieving Constant Envelope (CE) transmitted signals, for superior power efficiency with nonlinear High Power Amplifier (HPA), typically used at the transmitter in OFDM systems. Specifically, four angle modulations are considered: i) Phase Modulation (PM); ii) Frequency Modulation (FM); iii) Continuous Phase Modulation (CPM); and iv) Continuous Phase Chirp Modulation (CPCM). Descriptions of DCT- and FFT- based OFDM systems with M-ary Pulse Amplitude Modulation (MPAM) mapper, with these modulations, are given and expressions for transmitted signals are developed. The detection of these signals in Additive White Gaussian Noise (AWGN) and multipath fading channels is addressed. The receiver structure consists of arctangent demodulator followed by the optimum OFDM receiver for memoryless PM and FM modulations. However, for CPM and CPCM modulations that have inherent memory, arctangent demodulator followed by correction with oversampling technique is used prior to the optimum OFDM receiver. Closed-form expressions for Bit Error Rate (BER) have been derived and are function of: i) Signal-to-Noise Ratio, (Eb/N0); ii) Modulation parameters; iii) Number of amplitude levels of M-PAM mapper; and iv) parameters of multipath fading environment. It is shown that, in general, BER performance of CE-DCT-OFDM system is superior compared to that of conventional DCT-OFDM system, when the effect of HPA in the system is taken into account. Also, it is observed that CE-DCT-OFDM system outperforms CE-FFT-OFDM system by nearly 3 dB. The DCT- and FFT- OFDM systems with CPM and CPCM modulations are superior in BER performance compared to PM and FM modulations in these systems. The use of CPCM in OFDM systems can provide attractive trade off between bandwidth and BER performance. The performance of CE-DCT-OFDM and CE-FFT-OFDM systems over Rayleigh and Rician frequency non-selective slowly-varying fading channels are illustrated as a function of channel parameters and the penalty in SNR that must be paid as consequence of the fading is determined

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters
    corecore