482 research outputs found

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    Parameter-robust discretization and preconditioning of Biot's consolidation model

    Full text link
    Biot's consolidation model in poroelasticity has a number of applications in science, medicine, and engineering. The model depends on various parameters, and in practical applications these parameters ranges over several orders of magnitude. A current challenge is to design discretization techniques and solution algorithms that are well behaved with respect to these variations. The purpose of this paper is to study finite element discretizations of this model and construct block diagonal preconditioners for the discrete Biot systems. The approach taken here is to consider the stability of the problem in non-standard or weighted Hilbert spaces and employ the operator preconditioning approach. We derive preconditioners that are robust with respect to both the variations of the parameters and the mesh refinement. The parameters of interest are small time-step sizes, large bulk and shear moduli, and small hydraulic conductivity.Comment: 24 page

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    This workshop was well attended by 52 participants with broad geographic representation from 11 countries and 3 continents. It was a nice blend of researchers with various backgrounds

    A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems

    Get PDF
    We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underling partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented

    Weakly imposed symmetry and robust preconditioners for Biot's consolidation model

    Full text link
    We discuss the construction of robust preconditioners for finite element approximations of Biot's consolidation model in poroelasticity. More precisely, we study finite element methods based on generalizations of the Hellinger-Reissner principle of linear elasticity, where the stress tensor is one of the unknowns. The Biot model has a number of applications in science, medicine, and engineering. A challenge in many of these applications is that the model parameters range over several orders of magnitude. Therefore, discretization procedures which are well behaved with respect to such variations are needed. The focus of the present paper will be on the construction of preconditioners, such that the preconditioned discrete systems are well-conditioned with respect to variations of the model parameters as well as refinements of the discretization. As a byproduct, we also obtain preconditioners for linear elasticity that are robust in the incompressible limit.Comment: 21 page

    An embedded--hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present and analyze a new embedded--hybridized discontinuous Galerkin finite element method for the Stokes problem. The method has the attractive properties of full hybridized methods, namely an H(div)H({\rm div})-conforming velocity field, pointwise satisfaction of the continuity equation and \emph{a priori} error estimates for the velocity that are independent of the pressure. The embedded--hybridized formulation has advantages over a full hybridized formulation in that it has fewer global degrees-of-freedom for a given mesh and the algebraic structure of the resulting linear system is better suited to fast iterative solvers. The analysis results are supported by a range of numerical examples that demonstrate rates of convergence, and which show computational efficiency gains over a full hybridized formulation
    • …
    corecore