94,956 research outputs found

    MEMOFinder: combining _de_ _novo_ motif prediction methods with a database of known motifs

    Get PDF
    *Background:* Methods for finding overrepresented sequence motifs are useful in several key areas of computational biology. They aim at detecting very weak signals responsible for biological processes requiring robust sequence identification like transcription-factor binding to DNA or docking sites in proteins. Currently, general performance of the model-based motif-finding methods is unsatisfactory; however, different methods are successful in different cases. This leads to the practical problem of combining results of different motif-finding tools, taking into account current knowledge collected in motif databases.
*Results:* We propose a new complete service allowing researchers to submit their sequences for analysis by four different motif-finding methods for clustering and comparison with a reference motif database. It is tailored for regulatory motif detection, however it allows for substantial amount of configuration regarding sequence background, motif database and parameters for motif-finding methods.
*Availability:* The method is available online as a webserver at: http://bioputer.mimuw.edu.pl/software/mmf/. In addition, the source code is released on a GNU General Public License

    Consensus clustering and functional interpretation of gene-expression data

    Get PDF
    Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas

    Molecular Taxonomy of Phytopathogenic Fungi: A Case Study in Peronospora

    Get PDF
    Background: Inappropriate taxon definitions may have severe consequences in many areas. For instance, biologically sensible species delimitation of plant pathogens is crucial for measures such as plant protection or biological control and for comparative studies involving model organisms. However, delimiting species is challenging in the case of organisms for which often only molecular data are available, such as prokaryotes, fungi, and many unicellular eukaryotes. Even in the case of organisms with well-established morphological characteristics, molecular taxonomy is often necessary to emend current taxonomic concepts and to analyze DNA sequences directly sampled from the environment. Typically, for this purpose clustering approaches to delineate molecular operational taxonomic units have been applied using arbitrary choices regarding the distance threshold values, and the clustering algorithms. Methodology: Here, we report on a clustering optimization method to establish a molecular taxonomy of Peronospora based on ITS nrDNA sequences. Peronospora is the largest genus within the downy mildews, which are obligate parasites of higher plants, and includes various economically important pathogens. The method determines the distance function and clustering setting that result in an optimal agreement with selected reference data. Optimization was based on both taxonomy-based and host-based reference information, yielding the same outcome. Resampling and permutation methods indicate that the method is robust regarding taxon sampling and errors in the reference data. Tests with newly obtained ITS sequences demonstrate the use of the re-classified dataset in molecular identification of downy mildews. Conclusions: A corrected taxonomy is provided for all Peronospora ITS sequences contained in public databases. Clustering optimization appears to be broadly applicable in automated, sequence-based taxonomy. The method connects traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both traditional species concepts and genetic divergence.Peer reviewe

    Sequence-based Multiscale Model (SeqMM) for High-throughput chromosome conformation capture (Hi-C) data analysis

    Full text link
    In this paper, I introduce a Sequence-based Multiscale Model (SeqMM) for the biomolecular data analysis. With the combination of spectral graph method, I reveal the essential difference between the global scale models and local scale ones in structure clustering, i.e., different optimization on Euclidean (or spatial) distances and sequential (or genomic) distances. More specifically, clusters from global scale models optimize Euclidean distance relations. Local scale models, on the other hand, result in clusters that optimize the genomic distance relations. For a biomolecular data, Euclidean distances and sequential distances are two independent variables, which can never be optimized simultaneously in data clustering. However, sequence scale in my SeqMM can work as a tuning parameter that balances these two variables and deliver different clusterings based on my purposes. Further, my SeqMM is used to explore the hierarchical structures of chromosomes. I find that in global scale, the Fiedler vector from my SeqMM bears a great similarity with the principal vector from principal component analysis, and can be used to study genomic compartments. In TAD analysis, I find that TADs evaluated from different scales are not consistent and vary a lot. Particularly when the sequence scale is small, the calculated TAD boundaries are dramatically different. Even for regions with high contact frequencies, TAD regions show no obvious consistence. However, when the scale value increases further, although TADs are still quite different, TAD boundaries in these high contact frequency regions become more and more consistent. Finally, I find that for a fixed local scale, my method can deliver very robust TAD boundaries in different cluster numbers.Comment: 22 PAGES, 13 FIGURE

    Discovering transcriptional modules by Bayesian data integration

    Get PDF
    Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs

    Integrative Model-based clustering of microarray methylation and expression data

    Full text link
    In many fields, researchers are interested in large and complex biological processes. Two important examples are gene expression and DNA methylation in genetics. One key problem is to identify aberrant patterns of these processes and discover biologically distinct groups. In this article we develop a model-based method for clustering such data. The basis of our method involves the construction of a likelihood for any given partition of the subjects. We introduce cluster specific latent indicators that, along with some standard assumptions, impose a specific mixture distribution on each cluster. Estimation is carried out using the EM algorithm. The methods extend naturally to multiple data types of a similar nature, which leads to an integrated analysis over multiple data platforms, resulting in higher discriminating power.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS533 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exploring the assortativity-clustering space of a network's degree sequence

    Full text link
    Nowadays there is a multitude of measures designed to capture different aspects of network structure. To be able to say if the structure of certain network is expected or not, one needs a reference model (null model). One frequently used null model is the ensemble of graphs with the same set of degrees as the original network. In this paper we argue that this ensemble can be more than just a null model -- it also carries information about the original network and factors that affect its evolution. By mapping out this ensemble in the space of some low-level network structure -- in our case those measured by the assortativity and clustering coefficients -- one can for example study how close to the valid region of the parameter space the observed networks are. Such analysis suggests which quantities are actively optimized during the evolution of the network. We use four very different biological networks to exemplify our method. Among other things, we find that high clustering might be a force in the evolution of protein interaction networks. We also find that all four networks are conspicuously robust to both random errors and targeted attacks
    corecore