391 research outputs found

    A Comparative Study on the Methods Used for the Detection of Breast Cancer

    Get PDF
    Among women in the world, the death caused by the Breast cancer has become the leading role. At an initial stage, the tumor in the breast is hard to detect. Manual attempt have proven to be time consuming and inefficient in many cases. Hence there is a need for efficient methods that diagnoses the cancerous cell without human involvement with high accuracy. Mammography is a special case of CT scan which adopts X-ray method with high resolution film. so that it can detect well the tumors in the breast. This paper describes the comparative study of the various data mining methods on the detection of the breast cancer by using image processing techniques

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Computational Methods for Analysis of Resting State Functional Connectivity and Their Application to Study of Aging

    Get PDF
    The functional organization of the brain and its variability over the life-span can be studied using resting state functional MRI (rsfMRI). It can be used to define a macro-connectome\u27 describing functional interactions in the brain at the scale of major brain regions, facilitating the description of large-scale functional systems and their change over the lifespan. The connectome typically consists of thousands of links between hundreds of brain regions, making subsequent group-level analyses difficult. Furthermore, existing methods for group-level analyses are not equipped to identify heterogeneity in patient or otherwise affected populations. In this thesis, we incorporated recent advances in sparse representations for modeling spatial patterns of functional connectivity. We show that the resulting Sparse Connectivity Patterns (SCPs) are reproducible and capture major directions of variance in the data. Each SCP is associated with a scalar value that is proportional to the average connectivity within all the regions of that SCP. Thus, the SCP framework provides an interpretable basis for subsequent group-level analyses. Traditional univariate approaches are limited in their ability to detect heterogeneity in diseased/aging populations in a two-group comparison framework. To address this issue, we developed a Mixture-Of-Experts (MOE) method that combines unsupervised modeling of mixtures of distributions with supervised learning of classifiers, allowing discovery of multiple disease/aging phenotypes and the affected individuals associated with each pattern. We applied our methods to the Baltimore Longitudinal Study of Aging (BLSA), to find multiple advanced aging phenotypes. We built normative trajectories of functional and structural brain aging, which were used to identify individuals who seem resilient to aging, as well as individuals who show advanced signs of aging. Using MOE, we discovered five distinct patterns of advanced aging. Combined with neuro-cognitive data, we were able to further characterize one group as consisting of individuals with early-stage dementia. Another group had focal hippocampal atrophy, yet had higher levels of connectivity and somewhat higher cognitive performance, suggesting these individuals were recruiting their cognitive reserve to compensate for structural losses. These results demonstrate the utility of the developed methods, and pave the way for a broader understanding of the complexity of brain aging
    • …
    corecore