47 research outputs found

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Linearization of Time-encoded ADCs Architectures for Smart MEMS Sensors in Low Power CMOS Technology

    Get PDF
    Menci贸n Internacional en el t铆tulo de doctorIn the last few years, the development of mobile technologies and machine learning applications has increased the demand of MEMS-based digital microphones. Mobile devices have several microphones enabling noise canceling, acoustic beamforming and speech recognition. With the development of machine learning applications the interest to integrate sensors with neural networks has increased. This has driven the interest to develop digital microphones in nanometer CMOS nodes where the microphone analog-front end and digital processing, potentially including neural networks, is integrated on the same chip. Traditionally, analog-to-digital converters (ADCs) in digital microphones have been implemented using high order Sigma-Delta modulators. The most common technique to implement these high order Sigma-Selta modulators is switchedcapacitor CMOS circuits. Recently, to reduce power consumption and make them more suitable for tasks that require always-on operation, such as keyword recognition, switched-capacitor circuits have been improved using inverter-based operational amplifier integrators. Alternatively, switched-capacitor based Sigma- Delta modulators have been replaced by continuous time Sigma-Delta converters. Nevertheless, in both implementations the input signal is voltage encoded across the modulator, making the integration in smaller CMOS nodes more challenging due to the reduced voltage supply. An alternative technique consists on encoding the input signal on time (or frequency) instead of voltage. This is what time-encoded converters do. Lately, time-encoding converters have gained popularity as they are more suitable to nanometer CMOS nodes than Sigma-Delta converters. Among the ones that have drawn more interest we find voltage-controlled oscillator based ADCs (VCOADCs). VCO-ADCs can be implemented using CMOS inverter based ring oscillators (RO) and digital circuitry. They also show noise-shaping properties. This makes them a very interesting alternative for implementation of ADCs in nanometer CMOS nodes. Nevertheless, two main circuit impairments are present in VCO-ADCs, and both come from the oscillator non-idealities. The first of them is the oscillator phase noise, that reduces the resolution of the ADC. The second is the non-linear tuning curve of the oscillator, that results in harmonic distortion at medium to high input amplitudes. In this thesis we analyze the use of time encoding ADCs for MEMS microphones with special focus on ring oscillator based ADCs (RO-ADCs). Firstly, we study the use of a dual-slope based SAR noise shaped quantizer (SAR-NSQ) in sigma-delta loops. This quantizer adds and extra level of noise-shaping to the modulator, improving the resolution. The quantizer is explained, and equations for the noise transfer function (NTF) of a third order sigma-delta using a second order filter and the NSQ are presented. Secondly, we move our attention to the topic of RO-ADCs. We present a high dynamic range MEMS microphone 130nm CMOS chip based on an open-loop VCO-ADC. This dissertation shows the implementation of the analog front-end that includes the oscillator and the MEMS interface, with a focus on achieving low power consumption with low noise and a high dynamic range. The digital circuitry is left to be explained by the coauthor of the chip in his dissertation. The chip achieves a 80dBA peak SNDR and 108dB dynamic range with a THD of 1.5% at 128 dBSPL with a power consumption of 438渭W. After that, we analyze the use of a frequency-dependent-resistor (FDR) to implement an unsampled feedback loop around the oscillator. The objective is to reduce distortion. Additionally phase noise mitigation is achieved. A first topology including an operational amplifier to increase the loop gain is analyzed. The design is silicon proven in a 130 nm CMOS chip that achieves a 84 dBA peak SNDR with an analog power consumption of 600渭W. A second topology without the operational amplifier is also analyzed. Two chips are designed with this topology. The first chip in 130 nm CMOS is a full VCO-ADC including the frequencyto- digital converter (F2D). This chip achieves a peak SNDR of 76.6 dBA with a power consumption of 482渭W. The second chip includes only the oscillator and is implemented in 55nm CMOS. The peak SNDR is 78.15 dBA and the analog power consumption is 153渭W. To finish this thesis, two circuits that use an FDR with a ring oscillator are presented. The first is a capacity-to-digital converter (CDC). The second is a filter made with an FDR and an oscillator intended for voice activity detection tasks (VAD).En los 煤ltimos a帽os, el desarrollo de las tecnolog铆as m贸viles y las aplicaciones de machine-learning han aumentado la demanda de micr贸fonos digitales basados en MEMS. Los dipositivos m贸viles tienen varios micr贸fonos que permiten la cancelaci贸n de ruido, el beamforming o conformaci贸n de haces y el reconocimiento de voz. Con el desarrollo de aplicaciones de aprendizaje autom谩tico, el inter茅s por integrar sensores con redes neuronales ha aumentado. Esto ha impulsado el inter茅s por desarrollar micr贸fonos digitales en nodos CMOS nanom茅tricos donde el front-end anal贸gico y el procesamiento digital del micr贸fono, que puede incluir redes neuronales, est谩 integrado en el mismo chip. Tradicionalmente, los convertidores anal贸gicos-digitales (ADC) en micr贸fonos digitales han sido implementados utilizando moduladores Sigma-Delta de orden elevado. La t茅cnica m谩s com煤n para implementar estos moduladores Sigma- Delta es el uso de circuitos CMOS de capacidades conmutadas. Recientemente, para reducir el consumo de potencia y hacerlos m谩s adecuados para las tareas que requieren una operaci贸n continua, como el reconocimiento de palabras clave, los convertidores Sigma-Delta de capacidades conmutadas has sido mejorados con el uso de integradores implementados con amplificadores operacionales basados en inversores CMOS. Alternativamente, los Sigma-Delta de capacidades conmutadas han sido reemplazados por moduladores en tiempo continuo. No obstante, en ambas implementaciones, la se帽al de entrada es codificada en voltaje durante el proceso de conversi贸n, lo que hace que la integraci贸n en nodos CMOS m谩s peque帽os sea complicada debido a la menor tensi贸n de alimentaci贸n. Una t茅cnica alternativa consiste en codificar la se帽al de entrada en tiempo (o frecuencia) en lugar de tensi贸n. Esto es lo que hacen los convertidores de codificaci贸n temporal. Recientemente, los convertidores de codificaci贸n temporal han ganado popularidad ya que son m谩s adecuados para nodos CMOS nanom茅tricos que los convertidores Sigma-Delta. Entre los que m谩s inter茅s han despertado encontramos los ADCs basados en osciladores controlados por tensi贸n (VCO-ADC). Los VCO-ADC se pueden implementar usando osciladores en anillo (RO) implementados con inversores CMOS y circuitos digitales. Esta familia de convertidores tambi茅n tiene conformado de ruido. Esto los convierte en una alternativa muy interesante para la implementaci贸n de convertidores en nodos CMOS nanom茅tricos. Sin embargo, dos problemas principales est谩n presentes en este tipo de ADCs debidos ambos a las no idealidades del oscilador. El primero de los problemas es la presencia de ruido de fase en el oscilador, lo que reduce la resoluci贸n del ADC. El segundo es la curva de conversion voltaje-frecuencia no lineal del oscilador, lo que causa distorsi贸n a amplitudes medias y altas. En esta tesis analizamos el uso de ADCs de codificaci贸n temporal para micr贸fonos MEMS, con especial inter茅s en ADCS basados en osciladores de anillo (RO-ADC). En primer lugar, estudiamos el uso de un cuantificador SAR con conformado de ruido (SAR-NSQ) en moduladores Sigma-Delta. Este cuantificador agrega un orden adicional de conformado de ruido al modulador, mejorando la resoluci贸n. En este documento se explica el cuantificador y obtienen las ecuaciones para la funci贸n de transferencia de ruido (NTF) de un sigma-delta de tercer orden usando un filtro de segundo orden y el NSQ. En segundo lugar, dirigimos nuestra atenci贸n al tema de los RO-ADC. Presentamos el chip de un micr贸fono MEMS de alto rango din谩mico en CMOS de 130 nm basado en un VCO-ADC de bucle abierto. En esta tesis se explica la implementaci贸n del front-end anal贸gico que incluye el oscilador y la interfaz con el MEMS. Esta implementaci贸n se ha llevado a cabo con el objetivo de lograr un bajo consumo de potencia, un bajo nivel de ruido y un alto rango din谩mico. La descripci贸n del back-end digital se deja para la tesis del couator del chip. La SNDR de pico del chip es de 80dBA y el rango din谩mico de 108dB con una THD de 1,5% a 128 dBSPL y un consumo de potencia de 438渭W. Finalmente, se analiza el uso de una resistencia dependiente de frecuencia (FDR) para implementar un bucle de realimentaci贸n no muestreado alrededor del oscilador. El objetivo es reducir la distorsi贸n. Adem谩s, tambi茅n se logra la mitigaci贸n del ruido de fase del oscilador. Se analyza una primera topologia de realimentaci贸n incluyendo un amplificador operacional para incrementar la ganancia de bucle. Este dise帽o se prueba en silicio en un chip CMOS de 130nm que logra un pico de SNDR de 84 dBA con un consumo de potencia de 600渭W en la parte anal贸gica. Seguidamente, se analiza una segunda topolog铆a sin el amplificador operacional. Se fabrican y miden dos chips dise帽ados con esta topologia. El primero de ellos en CMOS de 130 nm es un VCO-ADC completo que incluye el convertidor de frecuencia a digital (F2D). Este chip alcanza un pico SNDR de 76,6 dBA con un consumo de potencia de 482渭W. El segundo incluye solo el oscilador y est谩 implementado en CMOS de 55nm. El pico SNDR es 78.15 dBA y el el consumo de potencia anal贸gica es de 153渭W. Para cerrar esta tesis, se presentan dos circuitos que usan la FDR con un oscilador en anillo. El primero es un convertidor de capacidad a digital (CDC). El segundo es un filtro realizado con una FDR y un oscilador, enfocado a tareas de detecci贸n de voz (VAD).Programa de Doctorado en Ingenier铆a El茅ctrica, Electr贸nica y Autom谩tica por la Universidad Carlos III de MadridPresidente: Antonio Jes煤s Torralba Silgado.- Secretaria: Mar铆a Luisa L贸pez Vallejo.- Vocal: Pieter Rombout

    A 7.3-渭 W 13-ENOB 98-dB SFDR Noise-Shaping SAR ADC With Duty-Cycled Amplifier and Mismatch Error Shaping

    Get PDF
    This article presents a second-order noise-shaping successive-approximation-register (SAR) analog-to-digital converter (ADC) that employs a duty-cycled amplifier and digital-predicted mismatch error shaping (MES). The loop filter is composed of an active amplifier and two cascaded passive integrators to provide a theoretical 30-dB in-band noise attenuation. The amplifier achieves 18\times gain in a power-efficient way thanks to its inverter-based topology and duty-cycled operation. The capacitor mismatch in the digital-to-analog converter (DAC) array is mitigated by first-order MES. A two-level digital prediction scheme is adopted with MES to avoid input range loss. Fabricated in 65-nm CMOS technology, the prototype achieves 80-dB peak signal-to-noise-and-distortion-ratio (SNDR) and 98-dB peak spurious-free-dynamic-range (SFDR) in a 31.25-kHz bandwidth with 16\times oversampling ratio (OSR), leading to a Schreier figure-of-merit (FoM) of 176.3 dB and a Walden FoM of 14.3 fJ/conversion-step.</p

    Time-based noise-shaping techniques for time-to-digital and analog-to-digital converters

    Get PDF
    In this dissertation, time-based signal processing techniques and their applications in oversampling and noise-shaping data converters are examined. These techniques demonstrate the ability to shift the burden of high performance analog circuits from the compressed voltage-domain to the augmented time-domain. First, the potential of high order noise-shaping and phase-domain feedback in time-to-digital converters (TDCs) is explored. A prototype phase reference, second-order continuous-time delta-sigma TDC for sensor applications was fabricated in 90nm CMOS and achieves 64 dB dynamic range in 1MHz signal bandwidth. Second, an ultra-high performance oscillator-based delta-sigma modulator architecture is investigated. The proposed circuit is a third-order continuous-time PLL-Based Delta-Sigma Modulator with simulated 77 dB SNDR in 40MHz signal bandwidth with OSR of 16, and is fabricated in 65nm CMOS
    corecore