907 research outputs found

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Constructive Incremental Learning for Fault Diagnosis of Rolling Bearings with Ensemble Domain Adaptation

    Full text link
    Given the prevalence of rolling bearing fault diagnosis as a practical issue across various working conditions, the limited availability of samples compounds the challenge. Additionally, the complexity of the external environment and the structure of rolling bearings often manifests faults characterized by randomness and fuzziness, hindering the effective extraction of fault characteristics and restricting the accuracy of fault diagnosis. To overcome these problems, this paper presents a novel approach termed constructive Incremental learning-based ensemble domain adaptation (CIL-EDA) approach. Specifically, it is implemented on stochastic configuration networks (SCN) to constructively improve its adaptive performance in multi-domains. Concretely, a cloud feature extraction method is employed in conjunction with wavelet packet decomposition (WPD) to capture the uncertainty of fault information from multiple resolution aspects. Subsequently, constructive Incremental learning-based domain adaptation (CIL-DA) is firstly developed to enhance the cross-domain learning capability of each hidden node through domain matching and construct a robust fault classifier by leveraging limited labeled data from both target and source domains. Finally, fault diagnosis results are obtained by a majority voting of CIL-EDA which integrates CIL-DA and parallel ensemble learning. Experimental results demonstrate that our CIL-DA outperforms several domain adaptation methods and CIL-EDA consistently outperforms state-of-art fault diagnosis methods in few-shot scenarios

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    An interpretable deep learning method for bearing fault diagnosis

    Full text link
    Deep learning (DL) has gained popularity in recent years as an effective tool for classifying the current health and predicting the future of industrial equipment. However, most DL models have black-box components with an underlying structure that is too complex to be interpreted and explained to human users. This presents significant challenges when deploying these models for safety-critical maintenance tasks, where non-technical personnel often need to have complete trust in the recommendations these models give. To address these challenges, we utilize a convolutional neural network (CNN) with Gradient-weighted Class Activation Mapping (Grad-CAM) activation map visualizations to form an interpretable DL method for classifying bearing faults. After the model training process, we apply Grad-CAM to identify a training sample's feature importance and to form a library of diagnosis knowledge (or health library) containing training samples with annotated feature maps. During the model evaluation process, the proposed approach retrieves prediction basis samples from the health library according to the similarity of the feature importance. The proposed method can be easily applied to any CNN model without modifying the model architecture, and our experimental results show that this method can select prediction basis samples that are intuitively and physically meaningful, improving the model's trustworthiness for human users

    Explainable AI for Machine Fault Diagnosis: Understanding Features' Contribution in Machine Learning Models for Industrial Condition Monitoring

    Get PDF
    Although the effectiveness of machine learning (ML) for machine diagnosis has been widely established, the interpretation of the diagnosis outcomes is still an open issue. Machine learning models behave as black boxes; therefore, the contribution given by each of the selected features to the diagnosis is not transparent to the user. This work is aimed at investigating the capabilities of the SHapley Additive exPlanation (SHAP) to identify the most important features for fault detection and classification in condition monitoring programs for rotating machinery. The authors analyse the case of medium-sized bearings of industrial interest. Namely, vibration data were collected for different health states from the test rig for industrial bearings available at the Mechanical Engineering Laboratory of Politecnico di Torino. The Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) diagnosis models are explained by means of the SHAP. Accuracies higher than 98.5% are achieved for both the models using the SHAP as a criterion for feature selection. It is found that the skewness and the shape factor of the vibration signal have the greatest impact on the modelsโ€™ outcomes

    Robust-MBFD: A Robust Deep Learning System for Motor Bearing Faults Detection Using Multiple Deep Learning Training Strategies and A Novel Double Loss Function

    Full text link
    This paper presents a comprehensive analysis of motor bearing fault detection (MBFD), which involves the task of identifying faults in a motor bearing based on its vibration. To this end, we first propose and evaluate various machine learning based systems for the MBFD task. Furthermore, we propose three deep learning based systems for the MBFD task, each of which explores one of the following training strategies: supervised learning, semi-supervised learning, and unsupervised learning. The proposed machine learning based systems and deep learning based systems are evaluated, compared, and then they are used to identify the best model for the MBFD task. We conducted extensive experiments on various benchmark datasets of motor bearing faults, including those from the American Society for Mechanical Failure Prevention Technology (MFPT), Case Western Reserve University Bearing Center (CWRU), and the Condition Monitoring of Bearing Damage in Electromechanical Drive Systems from Paderborn University (PU). The experimental results on different datasets highlight two main contributions of this study. First, we prove that deep learning based systems are more effective than machine learning based systems for the MBFD task. Second, we achieve a robust and general deep learning based system with a novel loss function for the MBFD task on several benchmark datasets, demonstrating its potential for real-life MBFD applications

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: ฮ‘ state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•œ ์ •๋ณด ํ™œ์šฉ ๊ทน๋Œ€ํ™” ๊ธฐ๋ฒ• ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์œค๋ณ‘๋™.๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ๊ณ ์žฅ์€ ๋งŽ์€ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ๋ง‰๋Œ€ํ•œ ์‚ฌํšŒ์ , ๊ฒฝ์ œ์  ์†์‹ค์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ‘์ž‘์Šค๋Ÿฐ ๊ณ ์žฅ์„ ๊ฐ์ง€ํ•˜๊ณ  ์˜ˆ๋ฐฉํ•˜์—ฌ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ๋ชฉํ‘œ๋Š” ๋Œ€์ƒ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ๊ณ ์žฅ ๋ฐœ์ƒ์„ ๊ฐ€๋Šฅํ•œ ๋นจ๋ฆฌ ๊ฐ์ง€ํ•˜๊ณ  ์ง„๋‹จํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ๊ทผ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฒ•์„ ํฌํ•จํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์€ ์ž์œจ์ ์ธ ํŠน์„ฑ์ธ์ž(feature) ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๊ณ  ๋†’์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์–ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•จ์— ์žˆ์–ด ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋ช‡ ๊ฐ€์ง€ ๋ฌธ์ œ์ ๋“ค์ด ์กด์žฌํ•œ๋‹ค. ๋จผ์ €, ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ๊นŠ๊ฒŒ ์Œ“์Œ์œผ๋กœ์จ ํ’๋ถ€ํ•œ ๊ณ„์ธต์  ํŠน์„ฑ์ธ์ž๋“ค์„ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์šธ๊ธฐ(gradient) ์ •๋ณด ํ๋ฆ„์˜ ๋น„ํšจ์œจ์„ฑ๊ณผ ๊ณผ์ ํ•ฉ ๋ฌธ์ œ๋กœ ์ธํ•ด ๋ชจ๋ธ์ด ๊นŠ์–ด์งˆ์ˆ˜๋ก ํ•™์Šต์ด ์–ด๋ ต๊ฒŒ ๋œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์žฅ ์ง„๋‹จ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํ•œ ์–‘์˜ ๋ ˆ์ด๋ธ” ๋ฐ์ดํ„ฐ(labeled data)๊ฐ€ ํ™•๋ณด๋ผ์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ˜„์žฅ์—์„œ ์šด์šฉ๋˜๊ณ  ์žˆ๋Š” ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ, ์ถฉ๋ถ„ํ•œ ์–‘์˜ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ” ์ •๋ณด๋ฅผ ์–ป๋Š” ๊ฒƒ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ์ง„๋‹จ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์„ธ๊ฐ€์ง€ ์ •๋ณด ํ™œ์šฉ ๊ทน๋Œ€ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋กœ 1) ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜ ๋‚ด ๊ธฐ์šธ๊ธฐ ์ •๋ณด ํ๋ฆ„์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ ์—ฐ๊ตฌ, 2) ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด ๋ฐ ์‚ผ์ค‘ํ•ญ ์†์‹ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ ๋ฐ ๋…ธ์ด์ฆˆ ์กฐ๊ฑด ํ•˜ ๊ฐ•๊ฑดํ•˜๊ณ  ์ฐจ๋ณ„์ ์ธ ํŠน์„ฑ์ธ์ž ํ•™์Šต์— ๋Œ€ํ•œ ์—ฐ๊ตฌ, 3) ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ๋ถ€ํ„ฐ ๋ ˆ์ด๋ธ” ์ •๋ณด๋ฅผ ์ „์ด์‹œ์ผœ ์‚ฌ์šฉํ•˜๋Š” ๋„๋ฉ”์ธ ์ ์‘ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๋‚ด ๊ธฐ์šธ๊ธฐ ์ •๋ณด ํ๋ฆ„์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ํ–ฅ์ƒ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ณ„์ธต์˜ ์•„์›ƒํ’‹(feature map)์„ ์ง์ ‘ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ํ–ฅ์ƒ๋œ ์ •๋ณด ํ๋ฆ„์„ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์ง„๋‹จ ๋ชจ๋ธ์„ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ์ฐจ์› ์ถ•์†Œ ๋ชจ๋“ˆ์„ ํ†ตํ•ด ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ž„์œผ๋กœ์จ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด ๋ฐ ๋ฉ”ํŠธ๋ฆญ ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ์ถฉ๋ถ„ํ•˜๊ณ  ๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ์€ ์กฐ๊ฑด ํ•˜์—์„œ๋„ ๋†’์€ ๊ณ ์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด ๊ฐ•๊ฑดํ•˜๊ณ  ์ฐจ๋ณ„์ ์ธ ํŠน์„ฑ์ธ์ž ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋จผ์ €, ํ’๋ถ€ํ•œ ์†Œ์Šค ๋„๋ฉ”์ธ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ํ›ˆ๋ จ๋œ ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ์„ ํƒ€๊ฒŸ ๋„๋ฉ”์ธ์œผ๋กœ ์ „์ดํ•ด ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ•๊ฑดํ•œ ์ง„๋‹จ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, semi-hard ์‚ผ์ค‘ํ•ญ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ ์ƒํƒœ ๋ ˆ์ด๋ธ”์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ๊ฐ€ ๋” ์ž˜ ๋ถ„๋ฆฌ๋˜๋„๋ก ํ•ด์ฃผ๋Š” ํŠน์„ฑ์ธ์ž๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€(unlabeled) ๋Œ€์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ณ ์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด ์ „์ด ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋Œ€์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ณ ์žฅ ์ง„๋‹จ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค๋ฅธ ์†Œ์Šค ๋„๋ฉ”์ธ์—์„œ ์–ป์€ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์ „์ด๋˜์–ด ํ™œ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ƒˆ๋กญ๊ฒŒ ๊ณ ์•ˆํ•œ ์˜๋ฏธ๋ก ์  ํด๋Ÿฌ์Šคํ„ฐ๋ง ์†์‹ค(semantic clustering loss)์„ ์—ฌ๋Ÿฌ ํŠน์„ฑ์ธ์ž ์ˆ˜์ค€์— ์ ์šฉํ•จ์œผ๋กœ์จ ์ฐจ๋ณ„์ ์ธ ๋„๋ฉ”์ธ ๋ถˆ๋ณ€ ๊ธฐ๋Šฅ์„ ํ•™์Šตํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋„๋ฉ”์ธ ๋ถˆ๋ณ€ ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ์˜๋ฏธ๋ก ์ ์œผ๋กœ ์ž˜ ๋ถ„๋ฅ˜๋˜๋Š” ํŠน์„ฑ์ธ์ž๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.Unexpected failures of mechanical systems can lead to substantial social and financial losses in many industries. In order to detect and prevent sudden failures and to enhance the reliability of mechanical systems, significant research efforts have been made to develop data-driven fault diagnosis techniques. The purpose of fault diagnosis techniques is to detect and identify the occurrence of abnormal behaviors in the target mechanical systems as early as possible. Recently, deep learning (DL) based fault diagnosis approaches, including the convolutional neural network (CNN) method, have shown remarkable fault diagnosis performance, thanks to their autonomous feature learning ability. Still, there are several issues that remain to be solved in the development of robust and industry-applicable deep learning-based fault diagnosis techniques. First, by stacking the neural network architectures deeper, enriched hierarchical features can be learned, and therefore, improved performance can be achieved. However, due to inefficiency in the gradient information flow and overfitting problems, deeper models cannot be trained comprehensively. Next, to develop a fault diagnosis model with high performance, it is necessary to obtain sufficient labeled data. However, for mechanical systems that operate in real-world environments, it is not easy to obtain sufficient data and label information. Consequently, novel methods that address these issues should be developed to improve the performance of deep learning based fault diagnosis techniques. This dissertation research investigated three research thrusts aimed toward maximizing the use of information to improve the performance of deep learning based fault diagnosis techniques, specifically: 1) study of the deep learning structure to enhance the gradient information flow within the architecture, 2) study of a robust and discriminative feature learning method under insufficient and noisy data conditions based on parameter transfer and triplet loss, and 3) investigation of a domain adaptation based fault diagnosis method that propagates the label information across different domains. The first research thrust suggests an advanced CNN-based architecture to improve the gradient information flow within the deep learning model. By directly connecting the feature maps of different layers, the diagnosis model can be trained efficiently thanks to enhanced information flow. In addition, the dimension reduction module also can increase the training efficiency by significantly reducing the number of trainable parameters. The second research thrust suggests a parameter transfer and metric learning based fault diagnosis method. The proposed approach facilitates robust and discriminative feature learning to enhance fault diagnosis performance under insufficient and noisy data conditions. The pre-trained model trained using abundant source domain data is transferred and used to develop a robust fault diagnosis method. Moreover, a semi-hard triplet loss function is adopted to learn the features with high separability, according to the class labels. Finally, the last research thrust proposes a label information propagation strategy to increase the fault diagnosis performance in the unlabeled target domain. The label information obtained from the source domain is transferred and utilized for developing fault diagnosis methods in the target domain. Simultaneously, the newly devised semantic clustering loss is applied at multiple feature levels to learn discriminative, domain-invariant features. As a result, features that are not only semantically well-clustered but also domain-invariant can be effectively learned.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 3 1.3 Dissertation Layout 6 Chapter 2 Technical Background and Literature Review 8 2.1 Fault Diagnosis Techniques for Mechanical Systems 8 2.1.1 Fault Diagnosis Techniques 10 2.1.2 Deep Learning Based Fault Diagnosis Techniques 15 2.2 Transfer Learning 22 2.3 Metric Learning 28 2.4 Summary and Discussion 30 Chapter 3 Direct Connection Based Convolutional Neural Network (DC-CNN) for Fault Diagnosis 31 3.1 Directly Connected Convolutional Module 33 3.2 Dimension Reduction Module 34 3.3 Input Vibration Image Generation 36 3.4 DC-CNN-Based Fault Diagnosis Method 40 3.5 Experimental Studies and Results 45 3.5.1 Experiment and Data Description 45 3.5.2 Compared Methods 48 3.5.3 Diagnosis Performance Results 51 3.5.4 The Number of Trainable Parameters 56 3.5.5 Visualization of the Learned Features 58 3.5.6 Robustness of Diagnosis Performance 62 3.6 Summary and Discussion 67 Chapter 4 Robust and Discriminative Feature Learning for Fault Diagnosis Under Insufficient and Noisy Data Conditions 68 4.1 Parameter transfer learning 70 4.2 Robust Feature Learning Based on the Pre-trained model 72 4.3 Discriminative Feature Learning Based on the Triplet loss 77 4.4 Robust and Discriminative Feature Learning for Fault Diagnosis 80 4.5 Experimental Studies and Results 84 4.5.1 Experiment and Data Description 84 4.5.2 Compared Methods 85 4.5.3 Experimental Results Under Insufficient Data Conditions 86 4.5.4 Experimental Results Under Noisy Data Conditions 92 4.6 Summary and Discussion 95 Chapter 5 A Domain Adaptation with Semantic Clustering (DASC) Method for Fault Diagnosis 96 5.1 Unsupervised Domain Adaptation 101 5.2 CNN-based Diagnosis Model 104 5.3 Learning of Domain-invariant Features 105 5.4 Domain Adaptation with Semantic Clustering 107 5.5 Proposed DASC-based Fault Diagnosis Method 109 5.6 Experimental Studies and Results 114 5.6.1 Experiment and Data Description 114 5.6.2 Compared Methods 117 5.6.3 Scenario I: Different Operating Conditions 118 5.6.4 Scenario II: Different Rotating Machinery 125 5.6.5 Analysis and Discussion 131 5.7 Summary and Discussion 140 Chapter 6 Conclusion 141 6.1 Contributions and Significance 141 6.2 Suggestions for Future Research 143 References 146 ๊ตญ๋ฌธ ์ดˆ๋ก 154๋ฐ•
    • โ€ฆ
    corecore