4,608 research outputs found

    Construction of embedded fMRI resting state functional connectivity networks using manifold learning

    Full text link
    We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling (MDS), Isometric Feature Mapping (ISOMAP) and Diffusion Maps. Furthermore, based on key global graph-theoretical properties of the embedded FCN, we compare their classification potential using machine learning techniques. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the lagged cross-correlation metric. We show that the FCN constructed with Diffusion Maps and the lagged cross-correlation metric outperform the other combinations

    Resting state functional connectivity in the default mode network and aerobic exercise in young adults

    Full text link
    Around the world Alzheimer’s Disease (AD) is on the rise. Previous studies have shown the default mode network (DMN) sees changes with AD progression as the disease erodes away cortical areas. Aerobic exercise with significant increases to cardiorespiratory fitness could show neuro-protective changes to delay AD. This study will explore if functional connectivity changes in the DMN can be seen in a young adult sample by using group independent component analysis through FSL MELODIC. The young adult sample of 19 were selected from a larger study at the Brain Plasticity and Neuroimaging Laboratory at Boston University. The participants engaged in a twelve-week exercise intervention in either a strength training or aerobic training group. They also completed pre-intervention and post-intervention resting-state fMRI scans to evaluate change in functional connectivity in the default mode network. Cardiorespiratory fitness was assessed using a modified Balke protocol with pre-intervention and post-intervention VO2 max percentiles being used. Through two repeated-measure ANOVA analyses, this study found no significant increase in mean functional connectivity or cardiorespiratory fitness in the young adult sample. While improvements in mean VO2 max percentile and functional connectivity would have been seen with a larger sample size, this study adds to the literature by suggesting if fitness does not improve significantly, neither will functional connectivity in the default mode network

    Cluster Failure Revisited: Impact of First Level Design and Data Quality on Cluster False Positive Rates

    Full text link
    Methodological research rarely generates a broad interest, yet our work on the validity of cluster inference methods for functional magnetic resonance imaging (fMRI) created intense discussion on both the minutia of our approach and its implications for the discipline. In the present work, we take on various critiques of our work and further explore the limitations of our original work. We address issues about the particular event-related designs we used, considering multiple event types and randomisation of events between subjects. We consider the lack of validity found with one-sample permutation (sign flipping) tests, investigating a number of approaches to improve the false positive control of this widely used procedure. We found that the combination of a two-sided test and cleaning the data using ICA FIX resulted in nominal false positive rates for all datasets, meaning that data cleaning is not only important for resting state fMRI, but also for task fMRI. Finally, we discuss the implications of our work on the fMRI literature as a whole, estimating that at least 10% of the fMRI studies have used the most problematic cluster inference method (P = 0.01 cluster defining threshold), and how individual studies can be interpreted in light of our findings. These additional results underscore our original conclusions, on the importance of data sharing and thorough evaluation of statistical methods on realistic null data

    Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    Get PDF
    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p < 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population

    Thalamo-cortical network activity between migraine attacks. Insights from MRI-based microstructural and functional resting-state network correlation analysis

    Get PDF
    BACKGROUND: Resting state magnetic resonance imaging allows studying functionally interconnected brain networks. Here we were aimed to verify functional connectivity between brain networks at rest and its relationship with thalamic microstructure in migraine without aura (MO) patients between attacks. METHODS: Eighteen patients with untreated MO underwent 3 T MRI scans and were compared to a group of 19 healthy volunteers (HV). We used MRI to collect resting state data among two selected resting state networks, identified using group independent component (IC) analysis. Fractional anisotropy (FA) and mean diffusivity (MD) values of bilateral thalami were retrieved from a previous diffusion tensor imaging study on the same subjects and correlated with resting state ICs Z-scores. RESULTS: In comparison to HV, in MO we found significant reduced functional connectivity between the default mode network and the visuo-spatial system. Both HV and migraine patients selected ICs Z-scores correlated negatively with FA values of the thalamus bilaterally. CONCLUSIONS: The present results are the first evidence supporting the hypothesis that an abnormal resting within networks connectivity associated with significant differences in baseline thalamic microstructure could contribute to interictal migraine pathophysiology

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study
    corecore