47 research outputs found

    Performance-Based Optical Proximity Correction

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel image processing algorithms and methods for improving their robustness and operational performance

    Get PDF
    Image processing algorithms have developed rapidly in recent years. Imaging functions are becoming more common in electronic devices, demanding better image quality, and more robust image capture in challenging conditions. Increasingly more complicated algorithms are being developed in order to achieve better signal to noise characteristics, more accurate colours, and wider dynamic range, in order to approach the human visual system performance levels. [Continues.

    Energy Efficient Computing with Time-Based Digital Circuits

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2019. Major: Electrical Engineering. Advisor: Chris Kim. 1 computer file (PDF); xv, 150 pages.Advancements in semiconductor technology have given the world economical, abundant, and reliable computing resources which have enabled countless breakthroughs in science, medicine, and agriculture which have improved the lives of many. Due to physics, the rate of these advancements is slowing, while the demand for the increasing computing horsepower ever grows. Novel computer architectures that leverage the foundation of conventional systems must become mainstream to continue providing the improved hardware required by engineers, scientists, and governments to innovate. This thesis provides a path forward by introducing multiple time-based computing architectures for a diverse range of applications. Simply put, time-based computing encodes the output of the computation in the time it takes to generate the result. Conventional systems encode this information in voltages across multiple signals; the performance of these systems is tightly coupled to improvements in semiconductor technology. Time-based computing elegantly uses the simplest of components from conventional systems to efficiently compute complex results. Two time-based neuromorphic computing platforms, based on a ring oscillator and a digital delay line, are described. An analog-to-digital converter is designed in the time domain using a beat frequency circuit which is used to record brain activity. A novel path planning architecture, with designs for 2D and 3D routes, is implemented in the time domain. Finally, a machine learning application using time domain inputs enables improved performance of heart rate prediction, biometric identification, and introduces a new method for using machine learning to predict temporal signal sequences. As these innovative architectures are presented, it will become clear the way forward will be increasingly enabled with time-based designs

    Heterogeneous Chip Multiprocessor: Data Representation, Mixed-Signal Processing Tiles, and System Design

    Get PDF
    With the emergence of big data, the need for more computationally intensive processors that can handle the increased processing demand has risen. Conventional computing paradigms based on the Von Neumann model that separates computational and memory structures have become outdated and less efficient for this increased demand. As the speed and memory density of processors have increased significantly over the years, these models of computing, which rely on a constant stream of data between the processor and memory, see less gains due to finite bandwidth and latency. Moreover, in the presence of extreme scaling, these conventional systems, implemented in submicron integrated circuits, have become even more susceptible to process variability, static leakage current, and more. In this work, alternative paradigms, predicated on distributive processing with robust data representation and mixed-signal processing tiles, are explored for constructing more efficient and scalable computing systems in application specific integrated circuits (ASICs). The focus of this dissertation work has been on heterogeneous chip multi-processor (CMP) design and optimization across different levels of abstraction. On the level of data representation, a different modality of representation based on random pulse density modulation (RPDM) coding is explored for more efficient processing using stochastic computation. On the level of circuit description, mixed-signal integrated circuits that exploit charge-based computing for energy efficient fixed point arithmetic are designed. Consequently, 8 different chips that test and showcase these circuits were fabricated in submicron CMOS processes. Finally, on the architectural level of description, a compact instruction-set processor and controller that facilitates distributive computing on System-On-Chips (SoCs) is designed. In addition to this, a robust bufferless network architecture is designed with a network simulator, and I/O cells are designed for SoCs. The culmination of this thesis work has led to the design and fabrication of a heterogeneous chip multi- processor prototype comprised of over 12,000 VVM cores, warp/dewarp processors, cache, and additional processors, which can be applied towards energy efficient large-scale data processing

    Electronic systems for intelligent particle tracking in the High Energy Physics field

    Get PDF
    This Ph.D thesis describes the development of a novel readout ASIC for hybrid pixel detector with intelligent particle tracking capabilities in High Energy Physics (HEP) application, called Macro Pixel ASIC (MPA). The concept of intelligent tracking is introduced for the upgrade of the particle tracking system of the Compact Muon Solenoid (CMS) experiment of the Large Hadron Collider (LHC) at CERN: this detector must be capable of selecting at front--end level the interesting particle and of providing them continuously to the back-end. This new functionality is required to cope with the improved performances of the LHC when, in about ten years' time, a major upgrade will lead to the High Luminosity scenario (HL-LHC). The high complexity of the digital logic for particle selection and the very low power requirement of 95% in particle selection and a data reduction from 200 Tb/s/cm2 to 1 Tb/s/cm2. A prototype, called MPA-Light, has been designed, produced and tested. According to the measurements, the prototype respects all the specications. The same device has been used for multi-chip assembly with a pixelated sensor. The assembly characterization with radioactive sources conrms the result obtained on the bare chip

    The BrightEyes-TTM: an open-source time-tagging module for fluorescence lifetime imaging microscopy applications

    Get PDF
    The aim of this Ph.D. work is to reason and show how an open-source multi-channel and standalone time-tagging device was developed, validated and used in combination with a new generation of single-photon array detectors to pursue super-resolved time-resolved fluorescence lifetime imaging measurements. Within the compound of time-resolved fluorescence laser scanning microscopy (LSM) techniques, fluorescence lifetime imaging microscopy (FLIM) plays a relevant role in the life-sciences field, thanks to its ability of detecting functional changes within the cellular micro-environment. The recent advancements in photon detection technologies, such as the introduction of asynchronous read-out single-photon avalanche diode (SPAD) array detectors, allow to image a fluorescent sample with spatial resolution below the diffraction limit, at the same time, yield the possibility of accessing the single-photon information content allowing for time-resolved FLIM measurements. Thus, super-resolved FLIM experiments can be accomplished using SPAD array detectors in combination with pulsed laser sources and special data acquisition systems (DAQs), capable of handling a multiplicity of inputs and dealing with the single-photons readouts generated by SPAD array detectors. Nowadays, the commercial market lacks a true standalone, multi-channel, single-board, time-tagging and affordable DAQ device specifically designed for super-resolved FLIM experiments. Moreover, in the scientific community, no-efforts have been placed yet in building a device that can compensate such absence. That is why, within this Ph.D. project, an open-source and low-cost device, the so-called BrightEyes-TTM (time tagging module), was developed and validated both for fluorescence lifetime and time-resolved measurements in general. The BrightEyes-TTM belongs to a niche of DAQ devices called time-to-digital converters (TDCs). The field-gate programmable array (FPGA) technology was chosen for implementing the BrightEyes-TTM thanks to its reprogrammability and low cost features. The literature reports several different FPGA-based TDC architectures. Particularly, the differential delay-line TDC architecture turned out to be the most suitable for this Ph.D. project as it offers an optimal trade-off between temporal precision, temporal range, temporal resolution, dead-time, linearity, and FPGA resources, which are all crucial characteristics for a TDC device. The goal of the project of pursuing a cost-effective and further-upgradable open-source time-tagging device was achieved as the BrigthEyes-TTM was developed and assembled using low-cost commercially available electronic development kits, thus allowing for the architecture to be easily reproduced. BrightEyes-TTM was deployed on a FPGA development board which was equipped with a USB 3.0 chip for communicating with a host-processing unit and a multi-input/output custom-built interface card for interconnecting the TTM with the outside world. Licence-free softwares were used for acquiring, reconstructing and analyzing the BrightEyes-TTM time-resolved data. In order to characterize the BrightEyes-TTM performances and, at the same time, validate the developed multi-channel TDC architecture, the TTM was firstly tested on a bench and then integrated into a fluorescent LSM system. Yielding a 30 ps single-shot precision and linearity performances that allows to be employed for actual FLIM measurements, the BrightEyes-TTM, which also proved to acquire data from many channels in parallel, was ultimately used with a SPAD array detector to perform fluorescence imaging and spectroscopy on biological systems. As output of the Ph.D. work, the BrightEyes-TTM was released on GitHub as a fully open-source project with two aims. The principal aim is to give to any microscopy and life science laboratory the possibility to implement and further develop single-photon-based time-resolved microscopy techniques. The second aim is to trigger the interest of the microscopy community, and establish the BrigthEyes-TTM as a new standard for single-photon FLSM and FLIM experiments

    Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate-Coding and Coincidence Processing. Application to Feed-Forward ConvNets

    Get PDF
    Event-driven visual sensors have attracted interest from a number of different research communities. They provide visual information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given “frame rate”. Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something meaningful is happening, without any notion of a frame. A special type of Event-driven sensor is the so called Dynamic-Vision-Sensor (DVS) where each pixel computes relative changes of light, or “temporal contrast”. The sensor output consists of a continuous flow of pixel events which represent the moving objects in the scene. Pixel events become available with micro second delays with respect to “reality”. These events can be processed “as they flow” by a cascade of event (convolution) processors. As a result, input and output event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful events. In this paper we present a methodology for mapping from a properly trained neural network in a conventional Frame-driven representation, to an Event-driven representation. The method is illustrated by studying Event-driven Convolutional Neural Networks (ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The Event-driven ConvNet is fed with recordings obtained from a real DVS camera. The Event-driven ConvNet is simulated with a dedicated Event-driven simulator, and consists of a number of Event-driven processing modules the characteristics of which are obtained from individually manufactured hardware modules

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    Design of Low-Power NRZ/PAM-4 Wireline Transmitters

    Get PDF
    Rapid growing demand for instant multimedia access in a myriad of digital devices has pushed the need for higher bandwidth in modern communication hardwares ranging from short-reach (SR) memory/storage interfaces to long-reach (LR) data center Ethernets. At the same time, comprehensive design optimization of link system that meets the energy-efficiency is required for mobile computing and low operational cost at datacenters. This doctoral study consists of design of two low-swing wireline transmitters featuring a low-power clock distribution and 2-tap equalization in energy-efficient manners up to 20-Gb/s operation. In spite of the reduced signaling power in the voltage-mode (VM) transmit driver, the presence of the segment selection logic still diminishes the power saving benefit. The first work presents a scalable VM transmitter which offers low static power dissipation and adopts an impedance-modulated 2-tap equalizer with analog tap control, thereby obviating driver segmentation and reducing pre-driver complexity and dynamic power. Per-channel quadrature clock generation with injection-locked oscillators (ILO) allows the generation of rail-to-rail quadrature clocks. Energy efficiency is further improved with capacitively driven low-swing global clock distribution and supply scaling at lower data rates, while output eye quality is maintained at low voltages with automatic phase calibration of the local ILO-generated quarter-rate clocks. A prototype fabricated in a general purpose 65 nm CMOS process includes a 2 mm global clock distribution network and two transmitters that support an output swing range of 100-300mV with up to 12-dB of equalization. The transmitters achieve 8-16 Gb/s operation at 0.65-1.05 pJ/b energy efficiency. The second work involves a dual-mode NRZ/PAM-4 differential low-swing voltage-mode (VM) transmitter. The pulse-selected output multiplexing allows reduction of power supply and deterministic jitter caused by large on-chip parasitic inherent in the transmission-gate-based multiplexers in the earlier work. Analog impedance control replica circuits running in the background produce gate-biasing voltages that control the peaking ratio for 2-tap feed-forward equalization and PAM-4 symbol levels for high-linearity. This analog control also allows for efficient generation of the middle levels in PAM-4 operation with good linearity quantified by level separation mismatch ratio of 95%. In NRZ mode, 2-tap feedforward equalization is configurable in high-performance controlled-impedance or energy-efficient impedance-modulated settings to provide performance scalability. Analytic design consideration on dynamic power, data-rate, mismatch, and output swing brings optimal performance metric on the given technology node. The proof-of-concept prototype is verified on silicon with 65 nm CMOS process with improved performance in speed and energy-efficiency owing to double-stack NMOS transistors in the output stage. The transmitter consumes as low as 29.6mW in 20-Gb/s NRZ and 25.5mW in the 28-Gb/s PAM-4 operations
    corecore