3,317 research outputs found

    A robust heart sounds segmentation module based on S-transform

    Get PDF
    This paper presents a new module for heart sounds segmentation based on S-transform. The heart sounds segmentation process segments the PhonoCardioGram (PCG) signal into four parts: S1 (first heart sound), systole, S2 (second heart sound) and diastole. It can be considered one of the most important phases in the auto-analysis of PCG signals. The proposed segmentation module can be divided into three main blocks: localization of heart sounds, boundaries detection of the localized heart sounds and classification block to distinguish between S1 and S2. An original localization method of heart sounds are proposed in this study. The method named SSE calculates the Shannon energy of the local spectrum calculated by the S-transform for each sample of the heart sound signal. The second block contains a novel approach for the boundaries detection of S1 and S2. The energy concentrations of the S-transform of localized sounds are optimized by using a window width optimization algorithm. Then the SSE envelope is recalculated and a local adaptive threshold is applied to refine the estimated boundaries. To distinguish between S1 and S2, a feature extraction method based on the singular value decomposition (SVD) of the S-matrix is applied in this study. The proposed segmentation module is evaluated at each block according to a database of 80 sounds, including 40 sounds with cardiac pathologies

    Frequency shifting approach towards textual transcription of heartbeat sounds

    Get PDF
    Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    The electronic stethoscope

    Get PDF

    Heart sound monitoring sys

    Get PDF
    Cardiovascular disease (CVD) is among the leading life threatening ailments [1] [2].Under normal circumstances, a cardiac examination utilizing electrocardiogram appliances or tools is proposed for a person stricken with a heart disorder. The logging of irregular heart behaviour and morphology is frequently achieved through an electrocardiogram (ECG) produced by an electrocardiographic appliance for tracing cardiac activity. For the most part, gauging of this activity is achieved through a non-invasive procedure i.e. through skin electrodes. Taking into consideration the ECG and heart sound together with clinical indications, the cardiologist arrives at a diagnosis on the condition of the patient's heart. This paper focuses on the concerns stated above and utilizes the signal processing theory to pave the way for better heart auscultation performance by GPs. The objective is to take note of heart sounds in correspondence to the valves as these sounds are a source of critical information. Comparative investigations regarding MFCC features with varying numbers of HMM states and varying numbers of Gaussian mixtures were carried out for the purpose of determining the impact of these features on the classification implementation at the sites of heart sound auscultation. We employ new strategy to evaluate and denoise the heart and ecg signal with a specific end goal to address specific issues
    corecore