752 research outputs found

    Introduction of loose ribbons in geographic information system

    Get PDF
    886-898In a geographic information system, we use principally many models, such as points, polylines and regions to represent spatial objects. But, usually, lines represent linear objects that have a width, whereas from a mathematical point of view, lines have no width. To solve this paradox, in previous papers, the notion of rectilinear lines was replaced by rectangular ribbons. The rectangular ribbon was used to represent longish objects such as streets, roads and rivers. However, the problems come from their mathematical modeling because in reality, rivers and roads can have irregular widths and measurement errors must be taken into account. So, not all longish objects have rectangular shapes, but they can have loose ones. To solve this problem, the concept of a loose ribbon need be developed. In this paper, we address the eventual mutation of the topological relations between loose ribbons into other topological relations, according to certain criteria, when downscaling

    A multi-agent system for on-the-fly web map generation and spatial conflict resolution

    Get PDF
    RĂ©sumĂ© Internet est devenu un moyen de diffusion de l’information gĂ©ographique par excellence. Il offre de plus en plus de services cartographiques accessibles par des milliers d’internautes Ă  travers le monde. Cependant, la qualitĂ© de ces services doit ĂȘtre amĂ©liorĂ©e, principalement en matiĂšre de personnalisation. A cette fin, il est important que la carte gĂ©nĂ©rĂ©e corresponde autant que possible aux besoins, aux prĂ©fĂ©rences et au contexte de l’utilisateur. Ce but peut ĂȘtre atteint en appliquant les transformations appropriĂ©es, en temps rĂ©el, aux objets de l’espace Ă  chaque cycle de gĂ©nĂ©ration de la carte. L’un des dĂ©fis majeurs de la gĂ©nĂ©ration d’une carte Ă  la volĂ©e est la rĂ©solution des conflits spatiaux qui apparaissent entre les objets, essentiellement Ă  cause de l’espace rĂ©duit des Ă©crans d’affichage. Dans cette thĂšse, nous proposons une nouvelle approche basĂ©e sur la mise en Ɠuvre d’un systĂšme multiagent pour la gĂ©nĂ©ration Ă  la volĂ©e des cartes et la rĂ©solution des conflits spatiaux. Cette approche est basĂ©e sur l’utilisation de la reprĂ©sentation multiple et la gĂ©nĂ©ralisation cartographique. Elle rĂ©sout les conflits spatiaux et gĂ©nĂšre les cartes demandĂ©es selon une stratĂ©gie innovatrice : la gĂ©nĂ©ration progressive des cartes par couches d’intĂ©rĂȘt. Chaque couche d’intĂ©rĂȘt contient tous les objets ayant le mĂȘme degrĂ© d’importance pour l’utilisateur. Ce contenu est dĂ©terminĂ© Ă  la volĂ©e au dĂ©but du processus de gĂ©nĂ©ration de la carte demandĂ©e. Notre approche multiagent gĂ©nĂšre et transfĂšre cette carte suivant un mode parallĂšle. En effet, une fois une couche d’intĂ©rĂȘt gĂ©nĂ©rĂ©e, elle est transmise Ă  l’utilisateur. Dans le but de rĂ©soudre les conflits spatiaux, et par la mĂȘme occasion gĂ©nĂ©rer la carte demandĂ©e, nous affectons un agent logiciel Ă  chaque objet de l’espace. Les agents entrent ensuite en compĂ©tition pour l’occupation de l’espace disponible. Cette compĂ©tition est basĂ©e sur un ensemble de prioritĂ©s qui correspondent aux diffĂ©rents degrĂ©s d’importance des objets pour l’utilisateur. Durant la rĂ©solution des conflits, les agents prennent en considĂ©ration les besoins et les prĂ©fĂ©rences de l’utilisateur afin d’amĂ©liorer la personnalisation de la carte. Ils amĂ©liorent la lisibilitĂ© des objets importants et utilisent des symboles qui pourraient aider l’utilisateur Ă  mieux comprendre l’espace gĂ©ographique. Le processus de gĂ©nĂ©ration de la carte peut ĂȘtre interrompu en tout temps par l’utilisateur lorsque les donnĂ©es dĂ©jĂ  transmises rĂ©pondent Ă  ses besoins. Dans ce cas, son temps d’attente est rĂ©duit, Ă©tant donnĂ© qu’il n’a pas Ă  attendre la gĂ©nĂ©ration du reste de la carte. Afin d’illustrer notre approche, nous l’appliquons au contexte de la cartographie sur le web ainsi qu’au contexte de la cartographie mobile. Dans ces deux contextes, nous catĂ©gorisons nos donnĂ©es, qui concernent la ville de QuĂ©bec, en quatre couches d’intĂ©rĂȘt contenant les objets explicitement demandĂ©s par l’utilisateur, les objets repĂšres, le rĂ©seau routier et les objets ordinaires qui n’ont aucune importance particuliĂšre pour l’utilisateur. Notre systĂšme multiagent vise Ă  rĂ©soudre certains problĂšmes liĂ©s Ă  la gĂ©nĂ©ration Ă  la volĂ©e des cartes web. Ces problĂšmes sont les suivants : 1. Comment adapter le contenu des cartes, Ă  la volĂ©e, aux besoins des utilisateurs ? 2. Comment rĂ©soudre les conflits spatiaux de maniĂšre Ă  amĂ©liorer la lisibilitĂ© de la carte tout en prenant en considĂ©ration les besoins de l’utilisateur ? 3. Comment accĂ©lĂ©rer la gĂ©nĂ©ration et le transfert des donnĂ©es aux utilisateurs ? Les principales contributions de cette thĂšse sont : 1. La rĂ©solution des conflits spatiaux en utilisant les systĂšmes multiagent, la gĂ©nĂ©ralisation cartographique et la reprĂ©sentation multiple. 2. La gĂ©nĂ©ration des cartes dans un contexte web et dans un contexte mobile, Ă  la volĂ©e, en utilisant les systĂšmes multiagent, la gĂ©nĂ©ralisation cartographique et la reprĂ©sentation multiple. 3. L’adaptation des contenus des cartes, en temps rĂ©el, aux besoins de l’utilisateur Ă  la source (durant la premiĂšre gĂ©nĂ©ration de la carte). 4. Une nouvelle modĂ©lisation de l’espace gĂ©ographique basĂ©e sur une architecture multi-couches du systĂšme multiagent. 5. Une approche de gĂ©nĂ©ration progressive des cartes basĂ©e sur les couches d’intĂ©rĂȘt. 6. La gĂ©nĂ©ration et le transfert, en parallĂšle, des cartes aux utilisateurs, dans les contextes web et mobile.Abstract Internet is a fast growing medium to get and disseminate geospatial information. It provides more and more web mapping services accessible by thousands of users worldwide. However, the quality of these services needs to be improved, especially in term of personalization. In order to increase map flexibility, it is important that the map corresponds as much as possible to the user’s needs, preferences and context. This may be possible by applying the suitable transformations, in real-time, to spatial objects at each map generation cycle. An underlying challenge of such on-the-fly map generation is to solve spatial conflicts that may appear between objects especially due to lack of space on display screens. In this dissertation, we propose a multiagent-based approach to address the problems of on-the-fly web map generation and spatial conflict resolution. The approach is based upon the use of multiple representation and cartographic generalization. It solves conflicts and generates maps according to our innovative progressive map generation by layers of interest approach. A layer of interest contains objects that have the same importance to the user. This content, which depends on the user’s needs and the map’s context of use, is determined on-the-fly. Our multiagent-based approach generates and transfers data of the required map in parallel. As soon as a given layer of interest is generated, it is transmitted to the user. In order to generate a given map and solve spatial conflicts, we assign a software agent to every spatial object. Then, the agents compete for space occupation. This competition is driven by a set of priorities corresponding to the importance of objects for the user. During processing, agents take into account users’ needs and preferences in order to improve the personalization of the final map. They emphasize important objects by improving their legibility and using symbols in order to help the user to better understand the geographic space. Since the user can stop the map generation process whenever he finds the required information from the amount of data already transferred, his waiting delays are reduced. In order to illustrate our approach, we apply it to the context of tourist web and mobile mapping applications. In these contexts, we propose to categorize data into four layers of interest containing: explicitly required objects, landmark objects, road network and ordinary objects which do not have any specific importance for the user. In this dissertation, our multiagent system aims at solving the following problems related to on-the-fly web mapping applications: 1. How can we adapt the contents of maps to users’ needs on-the-fly? 2. How can we solve spatial conflicts in order to improve the legibility of maps while taking into account users’ needs? 3. How can we speed up data generation and transfer to users? The main contributions of this thesis are: 1. The resolution of spatial conflicts using multiagent systems, cartographic generalization and multiple representation. 2. The generation of web and mobile maps, on-the-fly, using multiagent systems, cartographic generalization and multiple representation. 3. The real-time adaptation of maps’ contents to users’ needs at the source (during the first generation of the map). 4. A new modeling of the geographic space based upon a multi-layers multiagent system architecture. 5. A progressive map generation approach by layers of interest. 6. The generation and transfer of web and mobile maps at the same time to users

    Geospatial Data Management Research: Progress and Future Directions

    Get PDF
    Without geospatial data management, today®s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Dwelling on ontology - semantic reasoning over topographic maps

    Get PDF
    The thesis builds upon the hypothesis that the spatial arrangement of topographic features, such as buildings, roads and other land cover parcels, indicates how land is used. The aim is to make this kind of high-level semantic information explicit within topographic data. There is an increasing need to share and use data for a wider range of purposes, and to make data more definitive, intelligent and accessible. Unfortunately, we still encounter a gap between low-level data representations and high-level concepts that typify human qualitative spatial reasoning. The thesis adopts an ontological approach to bridge this gap and to derive functional information by using standard reasoning mechanisms offered by logic-based knowledge representation formalisms. It formulates a framework for the processes involved in interpreting land use information from topographic maps. Land use is a high-level abstract concept, but it is also an observable fact intimately tied to geography. By decomposing this relationship, the thesis correlates a one-to-one mapping between high-level conceptualisations established from human knowledge and real world entities represented in the data. Based on a middle-out approach, it develops a conceptual model that incrementally links different levels of detail, and thereby derives coarser, more meaningful descriptions from more detailed ones. The thesis verifies its proposed ideas by implementing an ontology describing the land use ‘residential area’ in the ontology editor ProtĂ©gĂ©. By asserting knowledge about high-level concepts such as types of dwellings, urban blocks and residential districts as well as individuals that link directly to topographic features stored in the database, the reasoner successfully infers instances of the defined classes. Despite current technological limitations, ontologies are a promising way forward in the manner we handle and integrate geographic data, especially with respect to how humans conceptualise geographic space

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps?  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype. &nbsp

    Proceedings of the GIS Research UK 18th Annual Conference GISRUK 2010

    Get PDF
    This volume holds the papers from the 18th annual GIS Research UK (GISRUK). This year the conference, hosted at University College London (UCL), from Wednesday 14 to Friday 16 April 2010. The conference covered the areas of core geographic information science research as well as applications domains such as crime and health and technological developments in LBS and the geoweb. UCL’s research mission as a global university is based around a series of Grand Challenges that affect us all, and these were accommodated in GISRUK 2010. The overarching theme this year was “Global Challenges”, with specific focus on the following themes: * Crime and Place * Environmental Change * Intelligent Transport * Public Health and Epidemiology * Simulation and Modelling * London as a global city * The geoweb and neo-geography * Open GIS and Volunteered Geographic Information * Human-Computer Interaction and GIS Traditionally, GISRUK has provided a platform for early career researchers as well as those with a significant track record of achievement in the area. As such, the conference provides a welcome blend of innovative thinking and mature reflection. GISRUK is the premier academic GIS conference in the UK and we are keen to maintain its outstanding record of achievement in developing GIS in the UK and beyond

    Cartographic modelling for automated map generation

    Get PDF
    • 

    corecore