32 research outputs found

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    A Scaling Robust Copy-Paste Tampering Detection for Digital Image Forensics

    Get PDF
    AbstractIt is crucial in image forensics to prove the authenticity of the digital images. Due to the availability of the using sophisticated image editing software programs, anyone can manipulate the images easily. There are various types of digital image manipulation or tampering possible; like image compositing, splicing, copy-paste, etc. In this paper, we propose a passive scaling robust algorithm for the detection of Copy-Paste tampering. Sometimes the copied region of an image is scaled before pasting to some other location in the image. In such cases, the normal Copy-Paste detection algorithm fails to detect the forgeries. We have implemented and used an improved customized Normalized Cross Correlation for detecting highly correlated areas from the image and the image blocks, thereby detecting the tampered regions from an image. The experimental results demonstrate that the proposed approach can be effectively used to detect copy-paste forgeries accurately and is scaling robust

    An improved discrete cosine transformation block based scheme for copy-move image forgery detection

    Get PDF
    Copy-moved forgery is a common method to manipulate images. Several attempts of image forgery have been discovered and involves a region been duplicated and copied and pasted on another region of the same image in other to achieve selfish gain. Generally, there are two classification of copy-move forgery detection technique such as the block-based and key point-based. The block-based division is mostly used and divides image into blocks during the stage of image pre-processing before features are extracted, whereas key-point based technique skips the division of image into blocks and directly extracts different local feature from the image. In this paper, we review various block based and key point approach which has been proposed by various researchers. There is a problem of achieving a balance between improving the detection accuracy and having minimal computational complexity. The proposed technique is based on an improved DCT based copy-move image forgery detection (IDB-CFD), which involves using an octagonal block to reduce the number of features for matching, thereby improving detection accuracy while having minimal complexity. The analysis of this work as compared to previous proposed works which is based on a robust detection algorithm for copy-move image forgery (RDA-CF) and involves using circle block to reduce the number of features, results show that previous work represents about 79% of the quantized DCT coefficients on each image block and this proposed work represents about 85% of quantized DCT coefficients, therefore, recovery of about 6% more features using the IDB-CFD technique was observed as the improvement over the previously proposed RDA-CF

    An evaluation of partial differential equations based digital inpainting algorithms

    Get PDF
    Partial Differential equations (PDEs) have been used to model various phenomena/tasks in different scientific and engineering endeavours. This thesis is devoted to modelling image inpainting by numerical implementations of certain PDEs. The main objectives of image inpainting include reconstructing damaged parts and filling-in regions in which data/colour information are missing. Different automatic and semi-automatic approaches to image inpainting have been developed including PDE-based, texture synthesis-based, exemplar-based, and hybrid approaches. Various challenges remain unresolved in reconstructing large size missing regions and/or missing areas with highly textured surroundings. Our main aim is to address such challenges by developing new advanced schemes with particular focus on using PDEs of different orders to preserve continuity of textural and geometric information in the surrounding of missing regions. We first investigated the problem of partial colour restoration in an image region whose greyscale channel is intact. A PDE-based solution is known that is modelled as minimising total variation of gradients in the different colour channels. We extend the applicability of this model to partial inpainting in other 3-channels colour spaces (such as RGB where information is missing in any of the two colours), simply by exploiting the known linear/affine relationships between different colouring models in the derivation of a modified PDE solution obtained by using the Euler-Lagrange minimisation of the corresponding gradient Total Variation (TV). We also developed two TV models on the relations between greyscale and colour channels using the Laplacian operator and the directional derivatives of gradients. The corresponding Euler-Lagrange minimisation yields two new PDEs of different orders for partial colourisation. We implemented these solutions in both spatial and frequency domains. We measure the success of these models by evaluating known image quality measures in inpainted regions for sufficiently large datasets and scenarios. The results reveal that our schemes compare well with existing algorithms, but inpainting large regions remains a challenge. Secondly, we investigate the Total Inpainting (TI) problem where all colour channels are missing in an image region. Reviewing and implementing existing PDE-based total inpainting methods reveal that high order PDEs, applied to each colour channel separately, perform well but are influenced by the size of the region and the quantity of texture surrounding it. Here we developed a TI scheme that benefits from our partial inpainting approach and apply two PDE methods to recover the missing regions in the image. First, we extract the (Y, Cb, Cr) of the image outside the missing region, apply the above PDE methods for reconstructing the missing regions in the luminance channel (Y), and then use the colourisation method to recover the missing (Cb, Cr) colours in the region. We shall demonstrate that compared to existing TI algorithms, our proposed method (using 2 PDE methods) performs well when tested on large datasets of natural and face images. Furthermore, this helps understanding of the impact of the texture in the surrounding areas on inpainting and opens new research directions. Thirdly, we investigate existing Exemplar-Based Inpainting (EBI) methods that do not use PDEs but simultaneously propagate the texture and structure into the missing region by finding similar patches within the rest of image and copying them into the boundary of the missing region. The order of patch propagation is determined by a priority function, and the similarity is determined by matching criteria. We shall exploit recently emerging Topological Data Analysis (TDA) tools to create innovative EBI schemes, referred to as TEBI. TDA studies shapes of data/objects to quantify image texture in terms of connectivity and closeness properties of certain data landmarks. Such quantifications help determine the appropriate size of patch propagation and will be used to modify the patch propagation priority function using the geometrical properties of curvature of isophotes, and to improve the matching criteria of patches by calculating the correlation coefficients from the spatial, gradient and Laplacian domains. The performance of this TEBI method will be tested by applying it to natural dataset images, resulting in improved inpainting when compared with other EBI methods. Fourthly, the recent hybrid-based inpainting techniques are reviewed and a number of highly performing innovative hybrid techniques that combine the use of high order PDE methods with the TEBI method for the simultaneous rebuilding of the missing texture and structure regions in an image are proposed. Such a hybrid scheme first decomposes the image into texture and structure components, and then the missing regions in these components are recovered by TEBI and PDE based methods respectively. The performance of our hybrid schemes will be compared with two existing hybrid algorithms. Fifthly, we turn our attention to inpainting large missing regions, and develop an innovative inpainting scheme that uses the concept of seam carving to reduce this problem to that of inpainting a smaller size missing region that can be dealt with efficiently using the inpainting schemes developed above. Seam carving resizes images based on content-awareness of the image for both reduction and expansion without affecting those image regions that have rich information. The missing region of the seam-carved version will be recovered by the TEBI method, original image size is restored by adding the removed seams and the missing parts of the added seams are then repaired using a high order PDE inpainting scheme. The benefits of this approach in dealing with large missing regions are demonstrated. The extensive performance testing of the developed inpainting methods shows that these methods significantly outperform existing inpainting methods for such a challenging task. However, the performance is still not acceptable in recovering large missing regions in high texture and structure images, and hence we shall identify remaining challenges to be investigated in the future. We shall also extend our work by investigating recently developed deep learning based image/video colourisation, with the aim of overcoming its limitations and shortcoming. Finally, we should also describe our on-going research into using TDA to detect recently growing serious “malicious” use of inpainting to create Fake images/videos

    A review of digital video tampering: from simple editing to full synthesis.

    Get PDF
    Video tampering methods have witnessed considerable progress in recent years. This is partly due to the rapid development of advanced deep learning methods, and also due to the large volume of video footage that is now in the public domain. Historically, convincing video tampering has been too labour intensive to achieve on a large scale. However, recent developments in deep learning-based methods have made it possible not only to produce convincing forged video but also to fully synthesize video content. Such advancements provide new means to improve visual content itself, but at the same time, they raise new challenges for state-of-the-art tampering detection methods. Video tampering detection has been an active field of research for some time, with periodic reviews of the subject. However, little attention has been paid to video tampering techniques themselves. This paper provides an objective and in-depth examination of current techniques related to digital video manipulation. We thoroughly examine their development, and show how current evaluation techniques provide opportunities for the advancement of video tampering detection. A critical and extensive review of photo-realistic video synthesis is provided with emphasis on deep learning-based methods. Existing tampered video datasets are also qualitatively reviewed and critically discussed. Finally, conclusions are drawn upon an exhaustive and thorough review of tampering methods with discussions of future research directions aimed at improving detection methods

    A new technique for video copy-move forgery detection

    Get PDF
    This thesis describes an algorithm for detecting copy-move falsifications in digital video. The thesis is composed of 5 chapters. In the first chapter there is an introduction to forgery detection for digital images and videos. Chapters 2, 3 and 4 describe in detail the techniques used for the implementation of the detection algorithm. The experimental results are presented in the fifth and last chapter

    DEEP LEARNING FOR FORENSICS

    Get PDF
    The advent of media sharing platforms and the easy availability of advanced photo or video editing software have resulted in a large quantity of manipulated images and videos being shared on the internet. While the intent behind such manipulations varies widely, concerns on the spread of fake news and misinformation is growing. Therefore, detecting manipulation has become an emerging necessity. Different from traditional classification, semantic object detection or segmentation, manipulation detection/classification pays more attention to low-level tampering artifacts than to semantic content. The main challenges in this problem include (a) investigating features to reveal tampering artifacts, (b) developing generic models which are robust to a large scale of post-processing methods, (c) applying algorithms to higher resolution in real scenarios and (d) handling the new emerging manipulation techniques. In this dissertation, we propose approaches to tackling these challenges. Manipulation detection utilizes both low-level tamper artifacts and semantic contents, suggesting that richer features needed to be harnessed to reveal more evidence. To learn rich features, we propose a two-stream Faster R-CNN network and train it end-to-end to detect the tampered regions given a manipulated image. Experiments on four standard image manipulation datasets demonstrate that our two-stream framework outperforms each individual stream, and also achieves state-of-the-art performance compared to alternative methods with robustness to resizing and compression. Additionally, to extend manipulation detection from image to video, we introduce VIDNet, Video Inpainting Detection Network, which contains an encoder-decoder architecture with a quad-directional local attention module. To reveal artifacts encoded in compression, VIDNet additionally takes in Error Level Analysis (ELA) frames to augment RGB frames, producing multimodal features at different levels with an encoder. Besides, to improve the generalization of manipulation detection model, we introduce a manipulated image generation process that creates true positives using currently available datasets. Drawing from traditional work on image blending, we propose a novel generator for creating such examples. In addition, we also propose to further create examples that force the algorithm to focus on boundary artifacts during training. Extensive experimental results validate our proposal. Furthermore, to apply deep learning models to high resolution scenarios efficiently, we treat the problem as a mask refinement given a coarse low resolution prediction. We propose to convert the regions of interest into strip images and compute a boundary prediction in the strip domain. Extensive experiments on both the public and a newly created high resolution dataset strongly validate our approach. Finally, to handle new emerging manipulation techniques while preserving performance on learned manipulation, we investigate incremental learning. We propose a multi-model and multi-level knowledge distillation strategy to preserve performance on old categories while training on new categories. Experiments on standard incremental learning benchmarks show that our method improves the overall performance over standard distillation techniques

    Video inpainting for non-repetitive motion

    Get PDF
    Master'sMASTER OF SCIENC

    Medical image synthesis using generative adversarial networks: towards photo-realistic image synthesis

    Full text link
    This proposed work addresses the photo-realism for synthetic images. We introduced a modified generative adversarial network: StencilGAN. It is a perceptually-aware generative adversarial network that synthesizes images based on overlaid labelled masks. This technique can be a prominent solution for the scarcity of the resources in the healthcare sector

    Beyond the pixels: learning and utilising video compression features for localisation of digital tampering.

    Get PDF
    Video compression is pervasive in digital society. With rising usage of deep convolutional neural networks (CNNs) in the fields of computer vision, video analysis and video tampering detection, it is important to investigate how patterns invisible to human eyes may be influencing modern computer vision techniques and how they can be used advantageously. This work thoroughly explores how video compression influences accuracy of CNNs and shows how optimal performance is achieved when compression levels in the training set closely match those of the test set. A novel method is then developed, using CNNs, to derive compression features directly from the pixels of video frames. It is then shown that these features can be readily used to detect inauthentic video content with good accuracy across multiple different video tampering techniques. Moreover, the ability to explain these features allows predictions to be made about their effectiveness against future tampering methods. The problem is motivated with a novel investigation into recent video manipulation methods, which shows that there is a consistent drive to produce convincing, photorealistic, manipulated or synthetic video. Humans, blind to the presence of video tampering, are also blind to the type of tampering. New detection techniques are required and, in order to compensate for human limitations, they should be broadly applicable to multiple tampering types. This thesis details the steps necessary to develop and evaluate such techniques
    corecore