42 research outputs found

    SNACH a new framework to support business process improvement.

    Get PDF
    Business processes are central to any organisation. They coordinate activities, roles, resources, systems and constraints within and across organisational boundaries to achieve predefined business goals. The demand for dynamic business environments, customer satisfaction, global competition, system integration, operational efficiency, innovation and adaptation to market changes necessitates the need for continuous process improvement. In order to adequately respond to these demands, business processes are designed in two approaches: Business Process Re-engineering (BPR) and Business Process Improvement (BPI). This thesis follows the BPI approach which considers existing infrastructure in an organization to improve operational efficiency and achieve organisational goals. Many methodologies have been developed for conducting BPI projects, but they provide little support for the actual act of systematically improving a business process. We adopted case study as the research strategy to examine a collaborative business process, specifically the UK Higher Education Institutions (HEI) admission process. The design science research methodology was used to answer the research questions and satisfy the research objectives. The Map technique was employed to construct the new BPI artefact based on the Mandatory Elements of Method (MEM) from Method Engineering. The new BPI framework comprises of a number of elements to support analysts and practitioners in process improvement activities. We present a novel approach to BPI, the SNACH (Simulation Network Analysis Control flow complexity and Heuristics) framework that supports the actual act of process improvement using a combination of process analysis techniques with integrated quantitative measurable concepts to measure and visualize improvement in four dimensions: cost, cycle time, flexibility and complexity. A simulation technique was employed to analyse the process models in terms of time and cost; and Control Flow Complexity was used to calculate the logical complexity of the process model. A complex network analysis approach was used to provide information about the structural relationship and information exchange between process activities. Using a complex network analysis approach to reduce a process model to a network of nodes and links so that its structural properties are analysed to provide information about the structural complexity and flexibility of the network. To achieve this higher level of abstraction, an algorithm was defined and validated using four disparate process models. The complex network analysis technique is integrated into the SNACH framework and its significance lies in the study of the nature of the individual nodes and the pattern of connections in the network. These characteristics are assessed using network metrics to quantitatively analyse the structure of the network, thereby providing insight into the interaction and behavioural structure of the business process activities. To conclude the design science research process phases, the artefact was evaluated in terms of its effectiveness and efficiency to systematically improve a business process by conducting an experiment using another use case

    Agent-based material transportation scheduling of AGV systems and its manufacturing applications

    Get PDF
    制度:新 ; 報告番号:甲3743号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/10 ; 早大学位記番号:新6114Waseda Universit

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Productivity and flexibility improvement of assembly lines for high-mix low-volume production. A white goods industry case

    Get PDF
    Las tendencias globales de la personalización e individualización en masa impulsan la producción industrial en serie corta y variada; y por tanto una gran variedad de productos en pequeñas cantidades. Por ello, la customización en masa precisa de sistemas de ensamblaje que sean a la vez altamente productivos y flexibles, a diferencia de la tradicional oposición entre ambas características. La llamada cuarta revolución industrial trae diversas tecnologías habilitadoras que podrían ser útiles para abordar este problema. Sin embargo, las metodologías para implementar el ensamblaje 4.0 todavía no han sido resueltas. De hecho, para aprovechar todas las ventajas potenciales de la Industria 4.0, es necesario contar con un nivel previo de excelencia operacional y un análisis holístico de los sistemas productivos. Esta tesis tiene como objetivo entender y definir cómo mejorar la productividad y la flexibilidad de las operaciones de montaje en serie corta y variada.Esta meta se ha dividido en tres objetivos. El primer objetivo consiste en comprender las relaciones entre la Industria 4.0 y las operaciones de ensamblaje, así como sus implicaciones para los operarios. El segundo objetivo consiste en desarrollar una metodología y las herramientas necesarias para evaluar el rendimiento de diferentes configuraciones de cadenas de ensamblaje. El último objetivo consiste en el diseño de sistemas de ensamblaje que permitan incrementar su productividad al menos un 25 %, produciendo en serie corta y variada, mediante la combinación de puestos de montaje manual y estaciones automatizadas.Para abordar la fase de comprensión y definición del problema, se llevó a cabo una revisión bibliográfica sistemática y se desarrolló un marco conceptual para el Ensamblaje 4.0. Se desarrollaron, verificaron y validaron dos herramientas de evaluación del rendimiento: un modelo matemático analítico y varios modelos de simulación por eventos discretos. Para la verificación, y como punto de partida para los análisis, se ha utilizado un caso de estudio industrial de un fabricante global de electrodomésticos. Se han empleado múltiples escenarios de simulación y técnicas de diseño de experimentos para investigar tres cuestiones clave.En primer lugar, se identificaron los factores más críticos para el rendimiento de líneas de montaje manuales multi-modelo. En segundo lugar, se analizó el rendimiento de líneas de montaje semiautomáticas paralelas con operarios móviles en comparación con líneas semiautomáticas o manuales con operarios fijos, empleando diversos escenarios de demanda en serie corta y variada. Por último, se investigó el uso de trenes milkrun para la logística interna de líneas de ensamblaje multi-modelo bajo la influencia de perturbaciones.Los resultados de las simulaciones muestran que las líneas paralelas con operarios móviles pueden superar a las de operarios fijos en cualquier escenario de demanda, alcanzando como mínimo el objetivo de mejorar la productividad en un 25% o más. También permiten reducir cómodamente el número de operarios trabajando en la línea sin afectar negativamente al equilibrado de la misma, posibilitando la producción eficiente de bajo volumen. Los resultados de las simulaciones de logística interna indican que los milkrun pueden proteger las líneas de ensamblaje de las perturbaciones originadas en procesos aguas arriba.Futuras líneas de investigación en base a los resultados obtenidos en esta tesis podrían incluir la expansión e integración de los modelos de simulación actuales para analizar las cadenas de montaje paralelas con operarios móviles incorporando logística, averías y mantenimiento, problemas de control de calidad y políticas de gestión de los retrabajos. Otra línea podría ser el uso de diferentes herramienta para el análisis del desempeño como, por ejemplo, técnicas de programación de la producción que permitan evaluar el desempeño operacional de diferentes configuraciones de cadenas de montaje con operarios móviles, tanto en términos de automatización como de organización en planta. Podrían incorporarse tecnologías de la Industria 4.0 a los modelos de simulación para evaluar su impacto operacional global ¿como cobots para ensamblaje o para la manipulación de materiales, realidad aumentada para el apoyo cognitivo a los operarios, o AGVs para la conducciónde los trenes milkrun. Por último, el trabajo presentado en esta tesis acerca las líneas de ensamblaje semiautomáticas con operarios móviles a su implementación industrial.<br /

    A bottom-up process management environment dedicated to process actors

    Get PDF
    Les organisations adoptent de plus en plus les environnements de gestion des processus car ils offrent des perspectives prometteuses d'exécution en termes de flexibilité et d'efficacité. Les environnements traditionnels proposent cependant une approche descendante qui nécessite, de la part de concepteurs, l'élaboration d'un modèle avant sa mise en oeuvre par les acteurs qui le déploient tout au long du cycle d'ingénierie. En raison de cette divergence, un différentiel important est souvent constaté entre les modèles de processus et leur mise en oeuvre. De par l'absence de prise directe avec les acteurs de terrain, le niveau opérationnel des environnements de processus est trop faiblement exploité, en particulier en ingénierie des systèmes et des logiciels. Afin de faciliter l'utilisation des environnements de processus, cette thèse présente une approche ascendante mettant les acteurs du processus au coeur de la problématique. L'approche proposée autorise conjointement la modélisation et la mise en oeuvre de leurs activités quotidiennes. Dans cet objectif, notre approche s'appuie sur la description des artéfacts produits et consommés durant l'exécution d'une activité. Cette description permet à chaque acteur du processus de décrire le fragment de processus exprimant les activités dictées par son rôle. Le processus global se décompose ainsi en plusieurs fragments appartenant à différents rôles. Chaque fragment est modélisé indépendamment des autres fragments ; il peut aussi être greffé progressivement au modèle de processus initial. La modélisation des processus devient ainsi moins complexe et plus parcellaire. En outre, un fragment de processus ne modélise que l'aspect structurel des activités d'un rôle sans anticiper sur le comportement des activités ; il est moins prescriptif qu'un ordonnancement des activités de l'acteur. Un moteur de processus basé sur la production et la consommation d'artéfacts a été développé pour promulguer des activités provenant de différents fragments de processus. Ce moteur ne requiert pas de relations prédéfinies d'ordonnancement entre les activités pour les synchroniser, mais déduit leur dépendance à partir de leurs artéfacts échangés. Les dépendances sont représentées et actualisées au sein d'un graphe appelé Process Dependency Graph (PDG) qui reflète à tout instant l'état courant de l'exécution du processus. Cet environnement a été étendu afin de gérer les changements imprévus qui se produisent inévitablement lors de la mise en oeuvre des processus. Ce dispositif permet aux acteurs de signaler des changements émergents, d'analyser les impacts possibles et de notifier les personnes affectées par les modifications. En résumé, notre approche préconise de répartir les tâches d'un processus en plusieurs fragments, modélisés et adoptés séparément par les acteurs du processus. Le moteur de processus, qui s'appuie sur la disponibilité des artéfacts pour synchroniser les activités, permet d'exécuter indépendamment les fragments des processus. Il permet aussi l'exécution d'un processus partiellement défini pour lequel certains fragments seraient manquants. La vision globale de l'état d'avancement des différents acteurs concernés émerge au fur et à mesure de l'exécution des fragments. Cette nouvelle approche vise à intégrer au mieux les acteurs du processus dans le cycle de vie de la gestion des processus, ce qui rend ces systèmes plus attractifs et plus proches de leurs préoccupations.Companies increasingly adopt process management environments, which offer promising perspectives for a more flexible and efficient process execution. Traditional process management environments embodies a top-down approach in which process modeling is performed by process designers and process enacting is performed by process actors. Due to this separation, there is often a gap between process models and their real enactments. As a consequence, the operational level of top down process environments has stayed low, especially in system and software industry, because they are not directly relevant to process actors' needs. In order to facilitate the usage of process environments for process actors, this thesis presents a user-centric and bottom-up approach that enables integration of process actors into process management life cycle by allowing them to perform both the modeling and enacting of their real processes. To this end, first, a bottom-up approach based on the artifact-centric modeling paradigm was proposed to allow each process actor to easily describe the process fragment containing the activities carried out by his role. The global process is thus decomposed into several fragments belonging to different roles. Each fragment can be modeled independently of other fragments and can be added progressively to the process model; therefore the process modeling becomes less complex and more partial. Moreover, a process fragment models only the structural aspect of a role's activities without anticipating the behavior of these activities; therefore the process model is less prescriptive. Second, a data-driven process engine was developed to enact activities coming from different process fragments. Our process engine does not require predefined work-sequence relations among these activities to synchronize them, but deduces such dependencies from their enactment-time exchanged artifacts. We used a graph structure name Process Dependency Graph (PDG) to store enactment-time process information and establish the dependencies among process elements. Third, we extend our process environment in order to handle unforeseen changes occurring during process enactment. This results in a Change-Aware Process Environment that allows process actors reporting emergent changes, analyzing possible impacts and notifying people affected by the changes. In our bottom-up approach, a process is split into several fragments separately modeled and enacted by process actors. Our data-driven process engine, which uses the availability of working artifacts to synchronize activities, enables enacting independently process fragments, and even a partially modeled process where some fragments are missing. The global process progressively emerges only at enactment time from the execution of process fragments. This new approach, with its simpler modeling and more flexible enactment, integrates better process actors into process management life cycle, and hence makes process management systems more attractive and useful for them

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling
    corecore