274 research outputs found

    Design of an Elastic Actuation System for a Gait-Assistive Active Orthosis for Incomplete Spinal Cord Injured Subjects

    Get PDF
    A spinal cord injury severely reduces the quality of life of affected people. Following the injury, limitations of the ability to move may occur due to the disruption of the motor and sensory functions of the nervous system depending on the severity of the lesion. An active stance-control knee-ankle-foot orthosis was developed and tested in earlier works to aid incomplete SCI subjects by increasing their mobility and independence. This thesis aims at the incorporation of elastic actuation into the active orthosis to utilise advantages of the compliant system regarding efficiency and human-robot interaction as well as the reproduction of the phyisological compliance of the human joints. Therefore, a model-based procedure is adapted to the design of an elastic actuation system for a gait-assisitve active orthosis. A determination of the optimal structure and parameters is undertaken via optimisation of models representing compliant actuators with increasing level of detail. The minimisation of the energy calculated from the positive amount of power or from the absolute power of the actuator generating one human-like gait cycle yields an optimal series stiffness, which is similar to the physiological stiffness of the human knee during the stance phase. Including efficiency factors for components, especially the consideration of the electric model of an electric motor yields additional information. A human-like gait cycle contains high torque and low velocities in the stance phase and lower torque combined with high velocities during the swing. Hence, the efficiency of an electric motor with a gear unit is only high in one of the phases. This yields a conceptual design of a series elastic actuator with locking of the actuator position during the stance phase. The locked position combined with the series compliance allows a reproduction of the characteristics of the human gait cycle during the stance phase. Unlocking the actuator position for the swing phase enables the selection of an optimal gear ratio to maximise the recuperable energy. To evaluate the developed concept, a laboratory specimen based on an electric motor, a harmonic drive gearbox, a torsional series spring and an electromagnetic brake is designed and appropriate components are selected. A control strategy, based on impedance control, is investigated and extended with a finite state machine to activate the locking mechanism. The control scheme and the laboratory specimen are implemented at a test bench, modelling the foot and shank as a pendulum articulated at the knee. An identification of parameters yields high and nonlinear friction as a problem of the system, which reduces the energy efficiency of the system and requires appropriate compensation. A comparison between direct and elastic actuation shows similar results for both systems at the test bench, showing that the increased complexity due to the second degree of freedom and the elastic behaviour of the actuator is treated properly. The final proof of concept requires the implementation at the active orthosis to emulate uncertainties and variations occurring during the human gait

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Controller design of a robotic orthosis using sinusoidal-input describing function model

    Get PDF
    Stroke is one of top leading causes of death in the world and it happens to more than 15 million people yearly. According to the National Stroke Association of Malaysia (NASAM), stroke is the third leading cause of death in Malaysia with around 40,000 cases reported annually. Forty percent of stroke survivors suffer from movement impairments after stroke. My grandfather was one of the victims and he was unable to attend any rehabilitation sessions due to several reasons. Hence, he lost the golden time to regain his movement and freedom. There are a lot of similar cases that happen daily in Malaysia. Besides, as the number of stroke patients increases yearly, the need for physiotherapists or rehabilitation machines equally increases. Hence, a low-cost clinical rehabilitation device is essential to provide assistance for an effective rehabilitation program and substitute the conventional method, as well as to reduce the burden of physiotherapists. In future, the proposed rehabilitation device would benefit not only stroke patients, but any patients who lost their normal walking ability including post-accident patients or those who suffer from spinal cord injury. The rehabilitation device aims to provide training assistance to patients not only in rehabilitation centres but also at home for daily training. The robotic orthosis is planned to be configured based on moving joint angles of human lower extremities. In the first stage of this research, angle-time characteristics for knee and hip swinging motion are utilised as a sagittal motion reference for the rehabilitation devices. The aim of following a proper gait cycle during rehabilitation training is to train patients to perform standing and swinging phases at proper timing and simultaneously provide the correct position reference to the patient during rehabilitation training. This can prevent patients from walking abnormally with an asymmetric gait cycle along or after the rehabilitation program. Besides, various limitations and the bulky structure of other rehabilitation devices lead to the design of the two-link lower limb rehabilitation device. This project aims to develop an assistive robotic rehabilitation device that generates a human gait trajectory for hemiplegic stroke patient gait rehabilitation in future. The shortcomings of other control applications due to environmental conditions and disturbances lead to the implementation of the describing function approach in the development of the devices. A sinusoidal-input describing function (SIDF) approach was implemented to linearize the nonlinear robotic orthosis with linear transfer function. The reason for utilising the SIDF approach is due to the nonlinear actual plant model with the present of load torque disturbances, discontinuous nonlinearities such as saturation and backlash, and also multivariable in the system. The nonlinear properties of the plant were proven in the preliminary stage of the research. A conventional controller, PID control combined with position and trajectory inputs were also applied to the system in the early stage of research. However, the experimental results were not satisfying. Finally, the SIDF approach was chosen to linearize the nonlinear system. Hence, generating a controller is much easier with a linear model of the nonlinear system. A SIDF approach was implemented to generate a controller for the multivariable, nonlinear closed loop system. Firstly, the SIDF approach enables the determination of the linear function of the nonlinear model known as the SIDF model. By utilising the linear model to mimic the behaviour of the nonlinear rehabilitation system, the controller for the nonlinear plant was able to be generated. In this research a controller based on linear control theory technique was used. The MATLAB library was used to design the lead-lag controller for the rehabilitation device. Various simulations such as step responses, tracking and decoupling of both links were performed on the generated controller with the nonlinear model to study the capability of the controller. Besides that, real life experiment testing was carried out to validate the feasibility of the controller designed via the SIDF approach. Simulation and experimental results were obtained, compared, and discussed. The highly accurate responses gained from experimental setup showed the robustness of the controller generated via SIDF approach. The implementation of the SIDF approach in a rehabilitation device (vertical two-link manipulator) is a first and hence, fulfils a novelty requirement for this research

    Controller design of a robotic orthosis using sinusoidal-input describing function model

    Get PDF
    Stroke is one of top leading causes of death in the world and it happens to more than 15 million people yearly. According to the National Stroke Association of Malaysia (NASAM), stroke is the third leading cause of death in Malaysia with around 40,000 cases reported annually. Forty percent of stroke survivors suffer from movement impairments after stroke. My grandfather was one of the victims and he was unable to attend any rehabilitation sessions due to several reasons. Hence, he lost the golden time to regain his movement and freedom. There are a lot of similar cases that happen daily in Malaysia. Besides, as the number of stroke patients increases yearly, the need for physiotherapists or rehabilitation machines equally increases. Hence, a low-cost clinical rehabilitation device is essential to provide assistance for an effective rehabilitation program and substitute the conventional method, as well as to reduce the burden of physiotherapists. In future, the proposed rehabilitation device would benefit not only stroke patients, but any patients who lost their normal walking ability including post-accident patients or those who suffer from spinal cord injury. The rehabilitation device aims to provide training assistance to patients not only in rehabilitation centres but also at home for daily training. The robotic orthosis is planned to be configured based on moving joint angles of human lower extremities. In the first stage of this research, angle-time characteristics for knee and hip swinging motion are utilised as a sagittal motion reference for the rehabilitation devices. The aim of following a proper gait cycle during rehabilitation training is to train patients to perform standing and swinging phases at proper timing and simultaneously provide the correct position reference to the patient during rehabilitation training. This can prevent patients from walking abnormally with an asymmetric gait cycle along or after the rehabilitation program. Besides, various limitations and the bulky structure of other rehabilitation devices lead to the design of the two-link lower limb rehabilitation device. This project aims to develop an assistive robotic rehabilitation device that generates a human gait trajectory for hemiplegic stroke patient gait rehabilitation in future. The shortcomings of other control applications due to environmental conditions and disturbances lead to the implementation of the describing function approach in the development of the devices. A sinusoidal-input describing function (SIDF) approach was implemented to linearize the nonlinear robotic orthosis with linear transfer function. The reason for utilising the SIDF approach is due to the nonlinear actual plant model with the present of load torque disturbances, discontinuous nonlinearities such as saturation and backlash, and also multivariable in the system. The nonlinear properties of the plant were proven in the preliminary stage of the research. A conventional controller, PID control combined with position and trajectory inputs were also applied to the system in the early stage of research. However, the experimental results were not satisfying. Finally, the SIDF approach was chosen to linearize the nonlinear system. Hence, generating a controller is much easier with a linear model of the nonlinear system. A SIDF approach was implemented to generate a controller for the multivariable, nonlinear closed loop system. Firstly, the SIDF approach enables the determination of the linear function of the nonlinear model known as the SIDF model. By utilising the linear model to mimic the behaviour of the nonlinear rehabilitation system, the controller for the nonlinear plant was able to be generated. In this research a controller based on linear control theory technique was used. The MATLAB library was used to design the lead-lag controller for the rehabilitation device. Various simulations such as step responses, tracking and decoupling of both links were performed on the generated controller with the nonlinear model to study the capability of the controller. Besides that, real life experiment testing was carried out to validate the feasibility of the controller designed via the SIDF approach. Simulation and experimental results were obtained, compared, and discussed. The highly accurate responses gained from experimental setup showed the robustness of the controller generated via SIDF approach. The implementation of the SIDF approach in a rehabilitation device (vertical two-link manipulator) is a first and hence, fulfils a novelty requirement for this research

    Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Get PDF
    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strateg

    Design And Development of A Powered Pediatric Lower-limb Orthosis

    Get PDF
    Gait impairments from disorders such as cerebral palsy are important to address early in life. A powered lower-limb orthosis can offer therapists a rehabilitation option using robot-assisted gait training. Although there are many devices already available for the adult population, there are few powered orthoses for the pediatric population. The aim of this dissertation is to embark on the first stages of development of a powered lower-limb orthosis for gait rehabilitation and assistance of children ages 6 to 11 years with walking impairments from cerebral palsy. This dissertation presents the design requirements of the orthosis, the design and fabrication of the joint actuators, and the design and manufacturing of a provisional version of the pediatric orthosis. Preliminary results demonstrate the capabilities of the joint actuators, confirm gait tracking capabilities of the actuators in the provisional orthosis, and evaluate a standing balance control strategy on the under-actuated provisional orthosis in simulation and experiment. In addition, this dissertation presents the design methodology for an anthropometrically parametrized orthosis, the fabrication of the prototype powered orthosis using this design methodology, and experimental application of orthosis hardware in providing walking assistance with a healthy adult. The presented results suggest the developed orthosis hardware is satisfactorily capable of operation and functional with a human subject. The first stages of development in this dissertation show encouraging results and will act as a foundation for further iv development of the device for rehabilitation and assistance of children with walking impairments

    A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.

    Get PDF
    Background: Hemiparetic gait is characterized by strong asymmetries that can severely affect the quality of life of stroke survivors. This type of asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the nonparetic limb. In this study, we aimed to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and nonparetic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active knee–ankle–foot orthosis designed and developed to naturally assist the paretic limbs of hemiparetic patients during gait. Methods: REFLEX uses an adaptive frequency oscillator to estimate the continuous gait phase of the nonparetic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) replicating the movement of the nonparetic leg or (2) inducing a healthy gait pattern for the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. The effects of this assistance were evaluated in terms of interlimb symmetry with respect to spatiotemporal gait parameters such as step length or time, as well as the similarity between the joint’s motion in both legs. Results: Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease in the compensatory strategies developed by the nonparetic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the nonparetic limb. Conclusions: This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of a hemiparetic patient based on the movement of their nonparetic leg is a valuable strategy for reducing the compensatory mechanisms developed by the nonparetic limb.post-print6406 K

    Coupling Disturbance Compensated MIMO Control of Parallel Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Get PDF
    To solve the poor compliance and safety problems in current rehabilitation robots, a novel two-degrees-offreedom (2-DOF) soft ankle rehabilitation robot driven by pneumatic muscles (PMs) is presented, taking advantages of the PM’s inherent compliance and the parallel structure’s high stiffness and payload capacity. However, the PM’s nonlinear, time-varying and hysteresis characteristics, and the coupling interference from parallel structure, as well as the unpredicted disturbance caused by arbitrary human behavior all raise difficulties in achieving high-precision control of the robot. In this paper, a multi-input-multi-output disturbance compensated sliding mode controller (MIMO-DCSMC) is proposed to tackle these problems. The proposed control method can tackle the un-modeled uncertainties and the coupling interference existed in multiple PMs’ synchronous movement, even with the subject’s participation. Experiment results on a healthy subject confirmed that the PMs-actuated ankle rehabilitation robot controlled by the proposed MIMO-DCSMC is able to assist patients to perform high-accuracy rehabilitation tasks by tracking the desired trajectory in a compliant manner
    corecore