872 research outputs found

    Raking the Cocktail Party

    Get PDF
    We present the concept of an acoustic rake receiver---a microphone beamformer that uses echoes to improve the noise and interference suppression. The rake idea is well-known in wireless communications; it involves constructively combining different multipath components that arrive at the receiver antennas. Unlike spread-spectrum signals used in wireless communications, speech signals are not orthogonal to their shifts. Therefore, we focus on the spatial structure, rather than temporal. Instead of explicitly estimating the channel, we create correspondences between early echoes in time and image sources in space. These multiple sources of the desired and the interfering signal offer additional spatial diversity that we can exploit in the beamformer design. We present several "intuitive" and optimal formulations of acoustic rake receivers, and show theoretically and numerically that the rake formulation of the maximum signal-to-interference-and-noise beamformer offers significant performance boosts in terms of noise and interference suppression. Beyond signal-to-noise ratio, we observe gains in terms of the \emph{perceptual evaluation of speech quality} (PESQ) metric for the speech quality. We accompany the paper by the complete simulation and processing chain written in Python. The code and the sound samples are available online at \url{http://lcav.github.io/AcousticRakeReceiver/}.Comment: 12 pages, 11 figures, Accepted for publication in IEEE Journal on Selected Topics in Signal Processing (Special Issue on Spatial Audio

    Real-time Microphone Array Processing for Sound-field Analysis and Perceptually Motivated Reproduction

    Get PDF
    This thesis details real-time implementations of sound-field analysis and perceptually motivated reproduction methods for visualisation and auralisation purposes. For the former, various methods for visualising the relative distribution of sound energy from one point in space are investigated and contrasted; including a novel reformulation of the cross-pattern coherence (CroPaC) algorithm, which integrates a new side-lobe suppression technique. Whereas for auralisation applications, listening tests were conducted to compare ambisonics reproduction with a novel headphone formulation of the directional audio coding (DirAC) method. The results indicate that the side-lobe suppressed CroPaC method offers greater spatial selectivity in reverberant conditions compared with other popular approaches, and that the new DirAC formulation yields higher perceived spatial accuracy when compared to the ambisonics method

    The impact of directional listening on perceived localization ability

    Get PDF
    An important purpose of hearing is to aid communication. Because hearing-in-noise is of primary importance to individuals who seek remediation for hearing impairment, it has been the primary objective of advances in technology. Directional microphone technology is the most promising way to address this problem. Another important role of hearing is localization, allowing one to sense one's environment and feel safe and secure. The properties of the listening environment that are altered with directional microphone technology have the potential to significantly impair localization ability. The purpose of this investigation was to determine the impact of listening with directional microphone technology on individuals' self-perceived level of localization disability and concurrent handicap. Participants included 57 unaided subjects, later randomly assigned to participate in one of three aided groups of 19 individuals each, who used omni-directional microphone only amplification, directional microphone only amplification, or toggle-switch equipped hearing aids that allowed user discretion over the directional microphone properties of the instruments. Comparisons were made between the unaided group responses and those of the subjects after having worn amplification for three months. Additionally, comparisons between the directional microphone only group responses and each of the other two aided groups' responses were made. No significant differences were found. Hearing aids with omni-directional microphones, directional-only microphones, and those that are equipped with a toggle-switch, neither increased nor decreased the self-perceived level of ability to tell the location of sound or the level of withdrawal from situations where localization ability was a factor. Concurrently, directional-microphone only technology did not significantly worsen or improve these factors as compared to the other two microphone configurations. Future research should include objective measures of localization ability using the same paradigm employed herein. If the use of directional microphone technology has an objective impact on localization, clinicians might be advised to counsel their patients to be careful moving in their environment even though they do not perceive a problem with localization. If ultimately no significant differences in either objective or subjective measures are found, then concern over decreases in quality of life and safety with directional microphone use need no longer be considered

    A Study into Speech Enhancement Techniques in Adverse Environment

    Get PDF
    This dissertation developed speech enhancement techniques that improve the speech quality in applications such as mobile communications, teleconferencing and smart loudspeakers. For these applications it is necessary to suppress noise and reverberation. Thus the contribution in this dissertation is twofold: single channel speech enhancement system which exploits the temporal and spectral diversity of the received microphone signal for noise suppression and multi-channel speech enhancement method with the ability to employ spatial diversity to reduce reverberation

    Informed algorithms for sound source separation in enclosed reverberant environments

    Get PDF
    While humans can separate a sound of interest amidst a cacophony of contending sounds in an echoic environment, machine-based methods lag behind in solving this task. This thesis thus aims at improving performance of audio separation algorithms when they are informed i.e. have access to source location information. These locations are assumed to be known a priori in this work, for example by video processing. Initially, a multi-microphone array based method combined with binary time-frequency masking is proposed. A robust least squares frequency invariant data independent beamformer designed with the location information is utilized to estimate the sources. To further enhance the estimated sources, binary time-frequency masking based post-processing is used but cepstral domain smoothing is required to mitigate musical noise. To tackle the under-determined case and further improve separation performance at higher reverberation times, a two-microphone based method which is inspired by human auditory processing and generates soft time-frequency masks is described. In this approach interaural level difference, interaural phase difference and mixing vectors are probabilistically modeled in the time-frequency domain and the model parameters are learned through the expectation-maximization (EM) algorithm. A direction vector is estimated for each source, using the location information, which is used as the mean parameter of the mixing vector model. Soft time-frequency masks are used to reconstruct the sources. A spatial covariance model is then integrated into the probabilistic model framework that encodes the spatial characteristics of the enclosure and further improves the separation performance in challenging scenarios i.e. when sources are in close proximity and when the level of reverberation is high. Finally, new dereverberation based pre-processing is proposed based on the cascade of three dereverberation stages where each enhances the twomicrophone reverberant mixture. The dereverberation stages are based on amplitude spectral subtraction, where the late reverberation is estimated and suppressed. The combination of such dereverberation based pre-processing and use of soft mask separation yields the best separation performance. All methods are evaluated with real and synthetic mixtures formed for example from speech signals from the TIMIT database and measured room impulse responses

    Video-aided model-based source separation in real reverberant rooms

    Get PDF
    Source separation algorithms that utilize only audio data can perform poorly if multiple sources or reverberation are present. In this paper we therefore propose a video-aided model-based source separation algorithm for a two-channel reverberant recording in which the sources are assumed static. By exploiting cues from video, we first localize individual speech sources in the enclosure and then estimate their directions. The interaural spatial cues, the interaural phase difference and the interaural level difference, as well as the mixing vectors are probabilistically modeled. The models make use of the source direction information and are evaluated at discrete timefrequency points. The model parameters are refined with the wellknown expectation-maximization (EM) algorithm. The algorithm outputs time-frequency masks that are used to reconstruct the individual sources. Simulation results show that by utilizing the visual modality the proposed algorithm can produce better timefrequency masks thereby giving improved source estimates. We provide experimental results to test the proposed algorithm in different scenarios and provide comparisons with both other audio-only and audio-visual algorithms and achieve improved performance both on synthetic and real data. We also include dereverberation based pre-processing in our algorithm in order to suppress the late reverberant components from the observed stereo mixture and further enhance the overall output of the algorithm. This advantage makes our algorithm a suitable candidate for use in under-determined highly reverberant settings where the performance of other audio-only and audio-visual methods is limited

    Acoustic event detection and localization using distributed microphone arrays

    Get PDF
    Automatic acoustic scene analysis is a complex task that involves several functionalities: detection (time), localization (space), separation, recognition, etc. This thesis focuses on both acoustic event detection (AED) and acoustic source localization (ASL), when several sources may be simultaneously present in a room. In particular, the experimentation work is carried out with a meeting-room scenario. Unlike previous works that either employed models of all possible sound combinations or additionally used video signals, in this thesis, the time overlapping sound problem is tackled by exploiting the signal diversity that results from the usage of multiple microphone array beamformers. The core of this thesis work is a rather computationally efficient approach that consists of three processing stages. In the first, a set of (null) steering beamformers is used to carry out diverse partial signal separations, by using multiple arbitrarily located linear microphone arrays, each of them composed of a small number of microphones. In the second stage, each of the beamformer output goes through a classification step, which uses models for all the targeted sound classes (HMM-GMM, in the experiments). Then, in a third stage, the classifier scores, either being intra- or inter-array, are combined using a probabilistic criterion (like MAP) or a machine learning fusion technique (fuzzy integral (FI), in the experiments). The above-mentioned processing scheme is applied in this thesis to a set of complexity-increasing problems, which are defined by the assumptions made regarding identities (plus time endpoints) and/or positions of sounds. In fact, the thesis report starts with the problem of unambiguously mapping the identities to the positions, continues with AED (positions assumed) and ASL (identities assumed), and ends with the integration of AED and ASL in a single system, which does not need any assumption about identities or positions. The evaluation experiments are carried out in a meeting-room scenario, where two sources are temporally overlapped; one of them is always speech and the other is an acoustic event from a pre-defined set. Two different databases are used, one that is produced by merging signals actually recorded in the UPCÂżs department smart-room, and the other consists of overlapping sound signals directly recorded in the same room and in a rather spontaneous way. From the experimental results with a single array, it can be observed that the proposed detection system performs better than either the model based system or a blind source separation based system. Moreover, the product rule based combination and the FI based fusion of the scores resulting from the multiple arrays improve the accuracies further. On the other hand, the posterior position assignment is performed with a very small error rate. Regarding ASL and assuming an accurate AED system output, the 1-source localization performance of the proposed system is slightly better than that of the widely-used SRP-PHAT system, working in an event-based mode, and it even performs significantly better than the latter one in the more complex 2-source scenario. Finally, though the joint system suffers from a slight degradation in terms of classification accuracy with respect to the case where the source positions are known, it shows the advantage of carrying out the two tasks, recognition and localization, with a single system, and it allows the inclusion of information about the prior probabilities of the source positions. It is worth noticing also that, although the acoustic scenario used for experimentation is rather limited, the approach and its formalism were developed for a general case, where the number and identities of sources are not constrained
    • …
    corecore