918 research outputs found

    Sparse and Non-Negative BSS for Noisy Data

    Full text link
    Non-negative blind source separation (BSS) has raised interest in various fields of research, as testified by the wide literature on the topic of non-negative matrix factorization (NMF). In this context, it is fundamental that the sources to be estimated present some diversity in order to be efficiently retrieved. Sparsity is known to enhance such contrast between the sources while producing very robust approaches, especially to noise. In this paper we introduce a new algorithm in order to tackle the blind separation of non-negative sparse sources from noisy measurements. We first show that sparsity and non-negativity constraints have to be carefully applied on the sought-after solution. In fact, improperly constrained solutions are unlikely to be stable and are therefore sub-optimal. The proposed algorithm, named nGMCA (non-negative Generalized Morphological Component Analysis), makes use of proximal calculus techniques to provide properly constrained solutions. The performance of nGMCA compared to other state-of-the-art algorithms is demonstrated by numerical experiments encompassing a wide variety of settings, with negligible parameter tuning. In particular, nGMCA is shown to provide robustness to noise and performs well on synthetic mixtures of real NMR spectra.Comment: 13 pages, 18 figures, to be published in IEEE Transactions on Signal Processin

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    Patch-based image reconstruction for PET using prior-image derived dictionaries

    Get PDF
    This collection contains figures and reconstructed images in .mat format associated with the manuscript tiled "Patch-based image reconstruction for PET using prior-image derived dictionaries" . The file, Data_Fig9-10.zip contains the reconstructed images associated with Fig 9 and 10 as a function of iteration for different methods. Data_Fig10-12.zip contains reconstructed images of the real data for different methods

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Generative-Discriminative Low Rank Decomposition for Medical Imaging Applications

    Get PDF
    In this thesis, we propose a method that can be used to extract biomarkers from medical images toward early diagnosis of abnormalities. Surge of demand for biomarkers and availability of medical images in the recent years call for accurate, repeatable, and interpretable approaches for extracting meaningful imaging features. However, extracting such information from medical images is a challenging task because the number of pixels (voxels) in a typical image is in order of millions while even a large sample-size in medical image dataset does not usually exceed a few hundred. Nevertheless, depending on the nature of an abnormality, only a parsimonious subset of voxels is typically relevant to the disease; therefore various notions of sparsity are exploited in this thesis to improve the generalization performance of the prediction task. We propose a novel discriminative dimensionality reduction method that yields good classification performance on various datasets without compromising the clinical interpretability of the results. This is achieved by combining the modelling strength of generative learning framework and the classification performance of discriminative learning paradigm. Clinical interpretability can be viewed as an additional measure of evaluation and is also helpful in designing methods that account for the clinical prior such as association of certain areas in a brain to a particular cognitive task or connectivity of some brain regions via neural fibres. We formulate our method as a large-scale optimization problem to solve a constrained matrix factorization. Finding an optimal solution of the large-scale matrix factorization renders off-the-shelf solver computationally prohibitive; therefore, we designed an efficient algorithm based on the proximal method to address the computational bottle-neck of the optimization problem. Our formulation is readily extended for different scenarios such as cases where a large cohort of subjects has uncertain or no class labels (semi-supervised learning) or a case where each subject has a battery of imaging channels (multi-channel), \etc. We show that by using various notions of sparsity as feasible sets of the optimization problem, we can encode different forms of prior knowledge ranging from brain parcellation to brain connectivity
    • …
    corecore