58 research outputs found

    Recuperação de informação multimodal em repositórios de imagem médica

    Get PDF
    The proliferation of digital medical imaging modalities in hospitals and other diagnostic facilities has created huge repositories of valuable data, often not fully explored. Moreover, the past few years show a growing trend of data production. As such, studying new ways to index, process and retrieve medical images becomes an important subject to be addressed by the wider community of radiologists, scientists and engineers. Content-based image retrieval, which encompasses various methods, can exploit the visual information of a medical imaging archive, and is known to be beneficial to practitioners and researchers. However, the integration of the latest systems for medical image retrieval into clinical workflows is still rare, and their effectiveness still show room for improvement. This thesis proposes solutions and methods for multimodal information retrieval, in the context of medical imaging repositories. The major contributions are a search engine for medical imaging studies supporting multimodal queries in an extensible archive; a framework for automated labeling of medical images for content discovery; and an assessment and proposal of feature learning techniques for concept detection from medical images, exhibiting greater potential than feature extraction algorithms that were pertinently used in similar tasks. These contributions, each in their own dimension, seek to narrow the scientific and technical gap towards the development and adoption of novel multimodal medical image retrieval systems, to ultimately become part of the workflows of medical practitioners, teachers, and researchers in healthcare.A proliferação de modalidades de imagem médica digital, em hospitais, clínicas e outros centros de diagnóstico, levou à criação de enormes repositórios de dados, frequentemente não explorados na sua totalidade. Além disso, os últimos anos revelam, claramente, uma tendência para o crescimento da produção de dados. Portanto, torna-se importante estudar novas maneiras de indexar, processar e recuperar imagens médicas, por parte da comunidade alargada de radiologistas, cientistas e engenheiros. A recuperação de imagens baseada em conteúdo, que envolve uma grande variedade de métodos, permite a exploração da informação visual num arquivo de imagem médica, o que traz benefícios para os médicos e investigadores. Contudo, a integração destas soluções nos fluxos de trabalho é ainda rara e a eficácia dos mais recentes sistemas de recuperação de imagem médica pode ser melhorada. A presente tese propõe soluções e métodos para recuperação de informação multimodal, no contexto de repositórios de imagem médica. As contribuições principais são as seguintes: um motor de pesquisa para estudos de imagem médica com suporte a pesquisas multimodais num arquivo extensível; uma estrutura para a anotação automática de imagens; e uma avaliação e proposta de técnicas de representation learning para deteção automática de conceitos em imagens médicas, exibindo maior potencial do que as técnicas de extração de features visuais outrora pertinentes em tarefas semelhantes. Estas contribuições procuram reduzir as dificuldades técnicas e científicas para o desenvolvimento e adoção de sistemas modernos de recuperação de imagem médica multimodal, de modo a que estes façam finalmente parte das ferramentas típicas dos profissionais, professores e investigadores da área da saúde.Programa Doutoral em Informátic

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Information fusion in content based image retrieval: A comprehensive overview

    Get PDF
    An ever increasing part of communication between persons involve the use of pictures, due to the cheap availability of powerful cameras on smartphones, and the cheap availability of storage space. The rising popularity of social networking applications such as Facebook, Twitter, Instagram, and of instant messaging applications, such as WhatsApp, WeChat, is the clear evidence of this phenomenon, due to the opportunity of sharing in real-time a pictorial representation of the context each individual is living in. The media rapidly exploited this phenomenon, using the same channel, either to publish their reports, or to gather additional information on an event through the community of users. While the real-time use of images is managed through metadata associated with the image (i.e., the timestamp, the geolocation, tags, etc.), their retrieval from an archive might be far from trivial, as an image bears a rich semantic content that goes beyond the description provided by its metadata. It turns out that after more than 20 years of research on Content-Based Image Retrieval (CBIR), the giant increase in the number and variety of images available in digital format is challenging the research community. It is quite easy to see that any approach aiming at facing such challenges must rely on different image representations that need to be conveniently fused in order to adapt to the subjectivity of image semantics. This paper offers a journey through the main information fusion ingredients that a recipe for the design of a CBIR system should include to meet the demanding needs of users

    Deep Image Retrieval: A Survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR.Comment: 20 pages, 11 figure

    Deep image representations for instance search

    Get PDF
    We address the problem of visual instance search, which consists to retrieve all the images within an dataset that contain a particular visual example provided to the system. The traditional approach of processing the image content for this task relied on extracting local low-level information within images that was “manually engineered” to be invariant to di↵erent image conditions. One of the most popular approaches uses the Bag of Visual Words (BoW) model on the local features to aggregate the local information into a single representation. Usually, a final reranking stage is included in the pipeline to refine the search results. Since the emergence of deep learning as the dominant technique in computer vision in 2012, much research attention has been focused on deriving image representations from Convolutional Neural Networks (CNN) models for the task of instance search as a “data driven” approach to designing image representations. However, one of the main challenges in the instance search task is the lack of annotated datasets to fit CNN models parameters. This work explores the capabilities of descriptors derived from pre-trained CNN models for image classification to address the task of instance retrieval. First, we conduct an investigation of the traditional bag of visual words encoding on local CNN features to produce a scalable image retrieval framework that generalizes well across di↵erent retrieval domains. Second, we propose to improve the capacity of the obtained representations by exploring an unsupervised fine-tuning strategy that allow us to obtain better performing representations at the price of losing the generalization of the representations. Finally, we propose using visual attention models to weight the contribution of the relevant parts of an image to obtain a very powerful image representation for instance retrieval without requiring the construction of a large and suitable training dataset for fine-tuning CNN architectures

    Image sense disambiguation : a multimodal approach

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 131-136).If a picture is worth a thousand words, can a thousand words be worth a training image? Most successful object recognition algorithms require manually annotated images of objects to be collected for training. The amount of human effort required to collect training data has limited most approaches to the several hundred object categories available in the labeled datasets. While human-annotated image data is scarce, additional sources of information can be used as weak labels, reducing the need for human supervision. In this thesis, we use three types of information to learn models of object categories: speech, text and dictionaries. We demonstrate that our use of non-traditional information sources facilitates automatic acquisition of visual object models for arbitrary words without requiring any labeled image examples. Spoken object references occur in many scenarios: interaction with an assistant robot, voice-tagging of photos, etc. Existing reference resolution methods are unimodal, relying either only on image features, or only on speech recognition. We propose a method that uses both the image of the object and the speech segment referring to it to disambiguate the underlying object label. We show that even noisy speech input helps visual recognition, and vice versa. We also explore two sources of linguistic sense information: the words surrounding images on web pages, and dictionary entries for nouns that refer to objects. Keywords that index images on the web have been used as weak object labels, but these tend to produce noisy datasets with many unrelated images. We use unlabeled text, dictionary definitions, and semantic relations between concepts to learn a refined model of image sense. Our model can work with as little supervision as a single English word. We apply this model to a dataset of web images indexed by polysemous keywords, and show that it improves both retrieval of specific senses, and the resulting object classifiers.by Kate Saenko.Ph.D

    A system for large-scale image and video retrieval on everyday scenes

    Get PDF
    There has been a growing amount of multimedia data generated on the web todayin terms of size and diversity. This has made accurate content retrieval with these large and complex collections of data a challenging problem. Motivated by the need for systems that can enable scalable and efficient search, we propose QIK (Querying Images Using Contextual Knowledge). QIK leverages advances in deep learning (DL) and natural language processing (NLP) for scene understanding to enable large-scale multimedia retrieval on everyday scenes with common objects. The system consists of three major components: Indexer, Query Processor, and Video Processor. Given an image, the Indexer performs probabilistic image understanding (PIU). The PIU generated consists of the most probable captions, parsed and represented by tree structures using NLP techniques, and detected objects. The PIU's are stored and indexed in a database system. For a query image, the Query Processor generates the most probable caption and parses it into the corresponding tree structure. Then an optimized tree-pattern query is constructed and executed on the database to retrieve a set of candidate images. The candidate images fetched are ranked using the tree-edit distance metric computed on the tree structures. Given a video, the Video Processor extracts a sequence of key scenes that are posed to the Query Processor to retrieve a set of candidate scenes. The candidate scene parse trees corresponding to a video are extracted and are ranked based on the number of matching scenes. We evaluated the performance of our system for large-scale image and video retrieval tasks on datasets containing everyday scenes and observed that our system could outperform state-ofthe- art techniques in terms of mean average precision.Includes bibliographical references
    corecore