97 research outputs found

    Direct Comparison using Coulomb Counting and Open Circuit Voltage Method for the State of Health Li-Po Battery

    Get PDF
    Electric cars have undergone many developments in the current digital era. This is to avoid the use of increasingly scarce fuel. Recent studies on electric cars show that battery estimation is an interesting topic to be implemented directly. The battery estimation strategy is carried out by the Battery Management System (BMS). BMS is an indispensable part of electric vehicles or hybrid vehicles to ensure optimal and reliable operation of regulating, monitoring, and protecting batteries. A reliable BMS can extend battery life by setting voltage, temperature, and charging and discharging current limits. The main estimation strategy used by BMS is battery fault, SOH, and battery life. Battery State of Health (SOH) is part of the information provided by the BMS to avoid battery damage and failure. SOC is the proportion of battery capacity SOH is a measure of battery health. This study aims to develop a method for estimating SOH simultaneously using Coulomb Counting and Open Circuit Voltage (OCV) algorithms. The battery is modeled to obtain battery parameters and components of internal resistance, capacitance polarization and OCV voltage source. Several tests were implemented in this research by applying the constant current (CC)-charge CC-discharge test. The state-space system is then formed to apply the Coulomb Counting and OCV algorithms so that SOH can be estimated simultaneously. The OCV-SOC function is obtained in the form of a tenth order polynomial and the battery model parameters say that these parameters change with the health of the battery. The results of the model validation are able to accurately model the battery with an average relative error of 0.027%. Coulomb Counting resulted in an accurate SOH estimation with an error of 3.4%

    An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model

    Get PDF
    Lithium-ion batteries are widely adopted as the power supplies for electric vehicles. A key but challenging issue is to achieve optimal battery charging, while taking into account of various constraints for safe, efficient and reliable operation. In this paper, a triple-objective function is first formulated for battery charging based on a coupled thermoelectric model. An advanced optimal charging strategy is then proposed to develop the optimal constant-current-constant-voltage (CCCV) charge current profile, which gives the best trade-off among three conflicting but important objectives for battery management. To be specific, a coupled thermoelectric battery model is first presented. Then, a specific triple-objective function consisting of three objectives, namely charging time, energy loss, and temperature rise (both the interior and surface), is proposed. Heuristic methods such as Teaching-learning-based-optimization (TLBO) and particle swarm optimization (PSO) are applied to optimize the triple-objective function, and their optimization performances are compared. The impacts of the weights for different terms in the objective function are then assessed. Experimental results show that the proposed optimal charging strategy is capable of offering desirable effective optimal charging current profiles and a proper trade-off among the conflicting objectives. Further, the proposed optimal charging strategy can be easily extended to other battery types

    Design and Operation of Stationary Distributed Battery Micro-storage Systems

    Get PDF
    Due to some technical and environmental constraints, expanding the current electric power generation and transmission system is being challenged by even increasing the deployment of distributed renewable generation and storage systems. Energy storage can be used to store energy from utility during low-demand (off-peak) hours and deliver this energy back to the utility during high-demand (on-peak) hours. Furthermore, energy storage can be used with renewable sources to overcome some of their limitations such as their strong dependence on the weather conditions, which cannot be perfectly predicted, and their unmatched or out-of-synchronization generation peaks with the demand peaks. Generally, energy storage enhances the performance of distributed renewable sources and increases the efficiency of the entire power system. Moreover, energy storage allows for leveling the load, shaving peak demands, and furthermore, transacting power with the utility grid. This research proposes an energy management system (EMS) to manage the operation of distributed grid-tied battery micro-storage systems for stationary applications when operated with and without renewable sources. The term micro refers to the capacity of the energy storage compared to the grid capacity. The proposed management system employs four dynamic models; economic model, battery model, and load and weather forecasting models. These models, which are the main contribution of this research, are used in order to optimally control the operation of the micro-storage system (MSS) to maximize the economic return for the end-user when operated in an electricity spot market system. Chapter 1 presents an introduction to the drawbacks of the current power system, the role of energy storage in deregulated electricity markets, limitations of renewable sources, ways for participating in spot electricity markets, and an outline of the main contributions in this dissertation. In Chapter 2, some hardware design considerations for distributed micro-storage systems as well as some economic analyses are presented. Chapters 3 and 4 propose a battery management system (BMS) that handles three main functions: battery charging, state-of-charge (SOC) estimation and state-of-health (SOH) estimation. Chapter 5 proposes load and weather forecasting models using artificial neural networks (ANNs) to develop an energy management strategy to control the operation of the MSS in a spot market system when incorporated with other renewable energy sources. Finally, conclusions and future work are presented in Chapter 6

    Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids

    Get PDF
    Electric Vehicles (EV) usage is increasing over the last few years due to a rise in fossil fuel prices and the rate of increasing carbon dioxide (CO2) emissions. The EV charging stations are powered by the existing utility power grid systems, increasing the stress on the utility grid and the load demand at the distribution side. The DC grid-based EV charging is more efficient than the AC distribution because of its higher reliability, power conversion efficiency, simple interfacing with renewable energy sources (RESs), and integration of energy storage units (ESU). The RES-generated power storage in local ESU is an alternative solution for managing the utility grid demand. In addition, to maintain the EV charging demand at the microgrid levels, energy management and control strategies must carefully power the EV battery charging unit. Also, charging stations require dedicated converter topologies, control strategies and need to follow the levels and standards. Based on the EV, ESU, and RES accessibility, the different types of microgrids architecture and control strategies are used to ensure the optimum operation at the EV charging point. Based on the above said merits, this review paper presents the different RES-connected architecture and control strategies used in EV charging stations. This study highlights the importance of different charging station architectures with the current power converter topologies proposed in the literature. In addition, the comparison of the microgrid-based charging station architecture with its energy management, control strategies, and charging converter controls are also presented. The different levels and types of the charging station used for EV charging, in addition to controls and connectors used in the charging station, are discussed. The experiment-based energy management strategy is developed for controlling the power flow among the available sources and charging terminals for the effective utilization of generated renewable power. The main motive of the EMS and its control is to maximize usage of RES consumption. This review also provides the challenges and opportunities for EV charging, considering selecting charging stations in the conclusion.publishedVersio
    • …
    corecore