473 research outputs found

    Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report

    Get PDF
    open7noopenSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, SerenaSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, Seren

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Effects of overground walking with a robotic exoskeleton on lower limb muscle synergies

    Full text link
    Les exosquelettes robotisés de marche (ERM) représentent une intervention prometteuse dans le domaine de la réadaptation locomotrice. Sur le plan clinique, les ERM facilitent la mise en application de principes de neuroplasticité. Jusqu'à présent, la majorité des études analysant les effets de l’ERM a été menée avec des ERM fournissant une assistance robotique complète le long d’une trajectoire de mouvements prédéfinie des membres inférieurs (MI) de façon à reproduire la marche de façon quasi parfaite à très basse vitesse. La nouvelle génération d’ERM, maintenant disponible sur le marché, propose de nouveaux modes de contrôles qui permettent, entre autres, une liberté de mouvement accrue aux MIs (c.-à-d. trajectoire non imposée) et une possibilité d’offrir une assistance ou résistance aux mouvements de différentes intensités surtout pendant la phase d’oscillation du cycle de marche. Cependant, les effets de ces modes de contrôles sur la coordination musculaire des MI pendant la marche au sol avec l’ERM, caractérisé via l’extraction de synergies musculaires (SM), restent méconnus. Cette thèse mesure et compare les caractéristiques des SM (c.-à-d. nombre, profils d’activation, composition musculaire et contribution relative des muscles) pendant la la marche au sol sans ou avec un ERM paramétré avec six différents modes de contrôle chez des individus en bonne santé (articles #1 et #2) et d’autres ayant une lésion médullaire incomplète (LMI) (article #3). Les signaux électromyographiques (EMG) des différents muscles clés des MI, enregistrés lors de la marche, ont été utilisés afin d’extraire les SM avec un algorithme de factorisation matricielle non négative. La similarité des cosinus et les coefficients de corrélation ont caractérisé les similitudes entre les caractéristiques des SM. Les résultats montrent que: 1) les profils d'activation temporelle et le nombre de SM sont modifiés en fonction de la vitesse de marche avec, entre autres une augmentation de la vitesse de marche entrainant une fusion de SM, chez les individus en bonne santé marchant sans ERM ; 2) lorsque ces derniers marchent avec un ERM, les différents modes de contrôle testés ne dupliquent pas adéquatement les SM retrouvées lors de la marche sans ERM. En fait, uniquement le mode de contrôle libérant la contrainte de trajectoire de mouvements des MIs dans le plan sagittal lors de la phase d’oscillation reproduit les principales caractéristiques des SM retrouvées pendant la marche sans ERM ; 3) le nombre et la composition musculaire des SM sont modifiés pendant la marche sans ERM chez les personnes ayant une LMI. Cependant, parmi tous les modes de contrôle étudiés, seul le mode de contrôle libérant le contrôle de la trajectoire de mouvements des MI et assistant l’oscillation du MIs (c.-à-d. HASSIST) permets l’extraction de SM similaire à celles observées chez des individus en santé lors d'une marche sans ERM. Dans l’ensemble, cette thèse a mis en évidence le fait que différentes demandes biomécaniques liées à la marche (c.-à-d. vitesse de marche, modes de contrôle de l’ERM) modifient le nombre et les caractéristiques de SM chez les personnes en santé. Cette thèse a également confirmé que la coordination musculaire, mise en évidence via l’analyse de SM, est altérée chez les personnes ayant une LMI et a tendance à se normaliser lors de la marche avec l’ERM paramétré dans le mode de HASSIST. Les nouvelles preuves appuieront les professionnels de la réadaptation dans le processus de prise de décision concernant la sélection du mode de contrôle des MIs lors de l’entrainement locomoteur utilisant avec un ERM.Wearable robotic exoskeletons (WRE) represent a promising rehabilitation intervention for locomotor rehabilitation training that aligns with activity-based neuroplasticity principles in terms of optimal sensory input, massed repetition, and proper kinematics. Thus far, most studies that investigated the effects of WRE have used WRE that provide full robotic assistance and fixed trajectory guidance to the lower extremity (L/E) to generate close-to-normal walking kinematics, usually at very slow speeds. Based on clinicians’ feedback, current commercially-available WRE have additional control options to be able to integrate these devices into the recovery process of individuals who have maintained some ability to walk after an injury to the central nervous system. In this context, WRE now offer additional degrees of movements for the L/E to move freely and different strategies to assist or resist movement, particularly during the gait cycle’s swing phase. However, the extent that these additional WRE control options affect L/E neuromuscular control during walking, typically characterized using muscle synergies (MSs), remains unknown. This thesis measures and compares MSs characteristics (i.e., number, temporal activation profile, and muscles contributing to a specific synergy [weightings]) during typical overground walking, with and without a WRE, in six different control modes, in abled-bodied individuals (Articles #1 and #2) and individuals with incomplete spinal cord injury (iSCI; Article #3). Surface EMG of key L/E muscles were recorded while walking and used to extract MSs using a non-negative matrix factorization algorithm. Cosine similarity and correlation coefficients characterized, grouped, and indicated similarities between MS characteristics. Results demonstrated that: 1) the number of MSs and MS temporal activation profiles in able-bodied individuals walking without WRE are modified by walking speed and that, as speed increased, specific MSs were fused or merged compared to MSs at slow speeds; 2) In able-bodied individuals walking with WRE, few WRE control modes maintained the typical MSs characteristics that were found during overground walking without WRE. Moreover, freeing the L/E swing trajectory imposed by the WRE best reproduced those MSs characteristics during overground walking without the WRE; and 3) After an iSCI, alterations to the number and the composition of MSs were observed during walking without WRE. However, of all WRE control modes that were investigated, only HASSIST (i.e., freeing WRE control over L/E swing trajectory while assisting the user’s self-selected trajectory) reproduced the number and composition of MSs found in abled-bodied individuals during overground walking without WRE. Altogether, the results of this thesis demonstrated that different walking-related biomechanical demands (i.e., walking speed) and most of the WRE control modes can alter some MSs, and their characteristics, in able-bodied individuals. This research also confirmed that impaired muscle coordination, assessed via MSs, can adapt when walking with a WRE set with specific control options (e.g., HASSIST). These MS adaptations mimicked typical MS characteristics extracted during overground walking. The evidence generated by this thesis will support the decision-making process when selecting specific L/E control options during WRE walking, allowing rehabilitation professionals to refine WRE locomotor training protocols

    Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient

    Get PDF
    Reaching and grasping are two of the most affected functions after stroke. Hybrid rehabilitation systems combining Functional Electrical Stimulation with Robotic devices have been proposed in the literature to improve rehabilitation outcomes. In this work, we present the combined use of a hybrid robotic system with an EEG-based Brain-Machine Interface to detect the user's movement intentions to trigger the assistance. The platform has been tested in a single session with a stroke patient. The results show how the patient could successfully interact with the BMI and command the assistance of the hybrid system with low latencies. Also, the Feedback Error Learning controller implemented in this system could adjust the required FES intensity to perform the task

    A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.

    Get PDF
    Background: Hemiparetic gait is characterized by strong asymmetries that can severely affect the quality of life of stroke survivors. This type of asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the nonparetic limb. In this study, we aimed to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and nonparetic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active knee–ankle–foot orthosis designed and developed to naturally assist the paretic limbs of hemiparetic patients during gait. Methods: REFLEX uses an adaptive frequency oscillator to estimate the continuous gait phase of the nonparetic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) replicating the movement of the nonparetic leg or (2) inducing a healthy gait pattern for the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. The effects of this assistance were evaluated in terms of interlimb symmetry with respect to spatiotemporal gait parameters such as step length or time, as well as the similarity between the joint’s motion in both legs. Results: Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease in the compensatory strategies developed by the nonparetic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the nonparetic limb. Conclusions: This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of a hemiparetic patient based on the movement of their nonparetic leg is a valuable strategy for reducing the compensatory mechanisms developed by the nonparetic limb.post-print6406 K

    Gait Training using Pneumatically Actuated Robot System

    Get PDF
    Powered exoskeleton device for gait rehabilitation has been designed and realized, together with proper control architecture. Its DOFs allow free leg motion, while the patient walks on a treadmill with its weight, completely or partially supported by the suspension system. The use of pneumatic actuators for actuation of this rehabilitation system is reasonable, because they offer high force output, good backdrivability, and good position and force control, at a relatively low cost. The effectiveness of the developed rehabilitation system and proposed control architecture was experimentally tested. During the experiments, the movement was natural and smooth while the limb moves along the target trajectory

    Joint Trajectory Generation and High-level Control for Patient-tailored Robotic Gait Rehabilitation

    Get PDF
    This dissertation presents a group of novel methods for robot-based gait rehabilitation which were developed aiming to offer more individualized therapies based on the specific condition of each patient, as well as to improve the overall rehabilitation experience for both patient and therapist. A novel methodology for gait pattern generation is proposed, which offers estimated hip and knee joint trajectories corresponding to healthy walking, and allows the therapist to graphically adapt the reference trajectories in order to fit better the patient's needs and disabilities. Additionally, the motion controllers for the hip and knee joints, mobile platform, and pelvic mechanism of an over-ground gait rehabilitation robotic system are also presented, as well as some proposed methods for assist as needed therapy. Two robot-patient synchronization approaches are also included in this work, together with a novel algorithm for online hip trajectory adaptation developed to reduce obstructive forces applied to the patient during therapy with compliant robotic systems. Finally, a prototype graphical user interface for the therapist is also presented

    Effects of a neuromuscular controller on a powered ankle exoskeleton during human walking

    Get PDF
    Wearable devices to assist abnormal gaits require controllers that interact with the user in an intuitive and unobtrusive manner. To design such a controller, we investigated a bio-inspired walking controller for orthoses and prostheses. We present (i) a Simulink neuromuscular control library derived from a computational model of reflexive neuromuscular control of human gait with a central pattern generator (CPG) extension, (ii) an ankle reflex controller for the Achilles exoskeleton derived from the library, and (iii) the mechanics and energetics of healthy subjects walking with an actuated ankle orthosis using the proposed controller. As this controller was designed to mimic human reflex patterns during locomotion, we hypothesize that walking with this controller would lead to lower energetic costs, compared to walking with the added mass of the device only, and allow for walking at different speeds without explicit control. Preliminary results suggest that the neuromuscular controller does not disturb walking dynamics in both slow and normal walking cases and can also reduce the net metabolic cost compared to transparent mode of the device. Reductions in tibialis anterior and soleus activity were observed, suggesting the controller could be suitable, in future work, for augmenting or replacing normal walking functions. We also investigated the impedance patterns generated by the neuromuscular controller. The validity of the equivalent variable impedance controller, particularly in stance phase, can facilitate serving subject-specific features by linking impedance measurement and neuromuscular controller
    • …
    corecore