542 research outputs found

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Interference-aware multipath video streaming in vehicular environments

    Get PDF
    The multipath transmission is one of the suitable transmission methods for high data rate oriented communication such as video streaming. Each video packets are split into smaller frames for parallel transmission via different paths. One path may interfere with another path due to these parallel transmissions. The multipath oriented interference is due to the route coupling which is one of the major challenges in vehicular traffic environments. The route coupling increases channel contention resulting in video packet collision. In this context, this paper proposes an Interference-aware Multipath Video Streaming (I-MVS) framework focusing on link and node disjoint optimal paths. Specifically, a multipath vehicular network model is derived. The model is utilized to develop interference-aware video streaming method considering angular driving statistics of vehicles. The quality of video streaming links is measured based on packet error rate considering non-circular transmission range oriented shadowing effects. Algorithms are developed as a complete operational I-MVS framework. The comparative performance evaluation attests the benefit of the proposed framework considering various video streaming related metrics

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Situation-Aware QoS Routing Algorithm for Vehicular Ad hoc Networks

    Get PDF
    A wide range of services has been developed for Vehicular Ad hoc Networks (VANETs) ranging from safety to infotainment applications. An essential requirement for such services is that they are offered with Quality of Service (QoS) guarantees in terms of service reliability and availability. Searching for feasible routes subject to multiple QoS constraints is in general an NP-hard problem. Besides, routing reliability needs to be paid special attention as communication links frequently break in VANETs. In this paper, we propose employing the Situational Awareness (SA) concept and an Ant Colony System (ACS) based algorithm to develop a Situation-Aware Multi-constrained QoS (SAMQ) routing algorithm for VANETs. SAMQ aims to compute feasible routes between the communicating vehicles subject to multiple QoS constraints and pick the best computed route, if such a route exists. To mitigate the risks inherited from selecting the best computed route that may turn out to fail at any moment, SAMQ utilises the SA levels and ACS mechanisms to prepare certain countermeasures with the aim of assuring a reliable data transmission. Simulation results demonstrate that SAMQ is capable of achieving a reliable data transmission as compared to the existing QoS routing algorithms even when the network topology is highly dynamic

    Video streaming in urban vehicular environments: Junction-aware multipath approach

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. In multipath video streaming transmission, the selection of the best vehicle for video packet forwarding considering the junction area is a challenging task due to the several diversions in the junction area. The vehicles in the junction area change direction based on the different diversions, which lead to video packet drop. In the existing works, the explicit consideration of different positions in the junction areas has not been considered for forwarding vehicle selection. To address the aforementioned challenges, a Junction-Aware vehicle selection for Multipath Video Streaming (JA-MVS) scheme has been proposed. The JA-MVS scheme considers three different cases in the junction area including the vehicle after the junction, before the junction and inside the junction area, with an evaluation of the vehicle signal strength based on the signal to interference plus noise ratio (SINR), which is based on the multipath data forwarding concept using greedy-based geographic routing. The performance of the proposed scheme is evaluated based on the Packet Loss Ratio (PLR), Structural Similarity Index (SSIM) and End-to-End Delay (E2ED) metrics. The JA-MVS is compared against two baseline schemes, Junction-Based Multipath Source Routing (JMSR) and the Adaptive Multipath geographic routing for Video Transmission (AMVT), in urban Vehicular Ad-Hoc Networks (VANETs)

    G-3MRP: a game-theoretical multimedia multimetric map-aware routing1 protocol for vehicular ad hoc networks

    Get PDF
    © 2022 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The particular requirements and special features of vehicular ad hoc networks (VANETs) (e.g., special mo8 bility patterns, short link lifetimes, rapid topology changes) involve challenges for the research community. 9 One of these challenges is the development of new routing protocols specially designed for VANETs. In 10 this paper, we present a novel game-theoretical approach of a multimetric geographical routing protocol for 11 VANETs to forward video-reporting messages in smart cities. Game theory is considered a very interesting 12 theoretical framework to analyze and optimize resource allocation problems in digital communication sce13 narios. Our contribution has shown to enhance the overall performance of VANETs in urban scenarios, in 14 terms of percentage of packet losses, average end-to-end packet delay and peak signal to noise ratio (PSNR).This work was supported by the Spanish Government under research project “Enhancing Communication Protocols with Machine Learning while Protecting Sensitive Data (COMPROMISE)” PID2020-113795RB-C31, funded by MCIN/AEI/10.13039/501100011033. Ahmad M. Mezher holds a McCain Postdoctoral Fellowship in Innovation with the Electrical and Computer Engineering department at the University of New Brunswick (UNB), Canada .Peer ReviewedPostprint (author's final draft

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues
    corecore