1,365 research outputs found

    Paradoxes and resolutions for semiparametric fusion of individual and summary data

    Full text link
    Suppose we have available individual data from an internal study and various types of summary statistics from relevant external studies. External summary statistics have been used as constraints on the internal data distribution, which promised to improve the statistical inference in the internal data; however, the additional use of external summary data may lead to paradoxical results: efficiency loss may occur if the uncertainty of summary statistics is not negligible and large estimation bias can emerge even if the bias of external summary statistics is small. We investigate these paradoxical results in a semiparametric framework. We establish the semiparametric efficiency bound for estimating a general functional of the internal data distribution, which is shown to be no larger than that using only internal data. We propose a data-fused efficient estimator that achieves this bound so that the efficiency paradox is resolved. Besides, a debiased estimator is further proposed which has selection consistency property by employing adaptive lasso penalty so that the resultant estimator can achieve the same asymptotic distribution as the oracle one that uses only unbiased summary statistics, which resolves the bias paradox. Simulations and application to a Helicobacter pylori infection dataset are used to illustrate the proposed methods.Comment: 16 pages, 3 figure

    Contributions to reasoning on imprecise data

    Get PDF
    This thesis contains four contributions which advocate cautious statistical modelling and inference. They achieve it by taking sets of models into account, either directly or indirectly by looking at compatible data situations. Special care is taken to avoid assumptions which are technically convenient, but reduce the uncertainty involved in an unjustified manner. This thesis provides methods for cautious statistical modelling and inference, which are able to exhaust the potential of precise and vague data, motivated by different fields of application, ranging from political science to official statistics. At first, the inherently imprecise Nonparametric Predictive Inference model is involved in the cautious selection of splitting variables in the construction of imprecise classification trees, which are able to describe a structure and allow for a reasonably high predictive power. Dependent on the interpretation of vagueness, different strategies for vague data are then discussed in terms of finite random closed sets: On the one hand, the data to be analysed are regarded as set-valued answers of an item in a questionnaire, where each possible answer corresponding to a subset of the sample space is interpreted as a separate entity. By this the finite random set is reduced to an (ordinary) random variable on a transformed sample space. The context of application is the analysis of voting intentions, where it is shown that the presented approach is able to characterise the undecided in a more detailed way, which common approaches are not able to. Altough the presented analysis, regarded as a first step, is carried out on set-valued data, which are suitably self-constructed with respect to the scientific research question, it still clearly demonstrates that the full potential of this quite general framework is not exhausted. It is capable of dealing with more complex applications. On the other hand, the vague data are produced by set-valued single imputation (imprecise imputation) where the finite random sets are interpreted as being the result of some (unspecified) coarsening. The approach is presented within the context of statistical matching, which is used to gain joint knowledge on features that were not jointly collected in the initial data production. This is especially relevant in data production, e.g. in official statistics, as it allows to fuse the information of already accessible data sets into a new one, without the requirement of actual data collection in the field. Finally, in order to share data, they need to be suitably anonymised. For the specific class of anonymisation techniques of microaggregation, its ability to infer on generalised linear regression models is evaluated. Therefore, the microaggregated data are regarded as a set of compatible, unobserved underlying data situations. Two strategies to follow are proposed. At first, a maximax-like optimisation strategy is pursued, in which the underlying unobserved data are incorporated into the regression model as nuisance parameters, providing a concise yet over-optimistic estimation of the regression coefficients. Secondly, an approach in terms of partial identification, which is inherently more cautious than the previous one, is applied to estimate the set of all regression coefficients that are obtained by performing the estimation on each compatible data situation. Vague data are deemed favourable to precise data as they additionally encompass the uncertainty of the individual observation, and therefore they have a higher informational value. However, to the present day, there are few (credible) statistical models that are able to deal with vague or set-valued data. For this reason, the collection of such data is neglected in data production, disallowing such models to exhaust their full potential. This in turn prevents a throughout evaluation, negatively affecting the (further) development of such models. This situation is a variant of the chicken or egg dilemma. The ambition of this thesis is to break this cycle by providing actual methods for dealing with vague data in relevant situations in practice, to stimulate the required data production.Diese Schrift setzt sich in vier Beiträgen für eine vorsichtige statistische Modellierung und Inferenz ein. Dieses wird erreicht, indem man Mengen von Modellen betrachtet, entweder direkt oder indirekt über die Interpretation der Daten als Menge zugrunde liegender Datensituationen. Besonderer Wert wird dabei darauf gelegt, Annahmen zu vermeiden, die zwar technisch bequem sind, aber die zugrunde liegende Unsicherheit der Daten in ungerechtfertigter Weise reduzieren. In dieser Schrift werden verschiedene Methoden der vorsichtigen Modellierung und Inferenz vorgeschlagen, die das Potential von präzisen und unscharfen Daten ausschöpfen können, angeregt von unterschiedlichen Anwendungsbereichen, die von Politikwissenschaften bis zur amtlichen Statistik reichen. Zuerst wird das Modell der Nonparametrischen Prädiktiven Inferenz, welches per se unscharf ist, in der vorsichtigen Auswahl von Split-Variablen bei der Erstellung von Klassifikationsbäumen verwendet, die auf Methoden der Imprecise Probabilities fußen. Diese Bäume zeichnen sich dadurch aus, dass sie sowohl eine Struktur beschreiben, als auch eine annehmbar hohe Prädiktionsgüte aufweisen. In Abhängigkeit von der Interpretation der Unschärfe, werden dann verschiedene Strategien für den Umgang mit unscharfen Daten im Rahmen von finiten Random Sets erörtert. Einerseits werden die zu analysierenden Daten als mengenwertige Antwort auf eine Frage in einer Fragebogen aufgefasst. Hierbei wird jede mögliche (multiple) Antwort, die eine Teilmenge des Stichprobenraumes darstellt, als eigenständige Entität betrachtet. Somit werden die finiten Random Sets auf (gewöhnliche) Zufallsvariablen reduziert, die nun in einen transformierten Raum abbilden. Im Rahmen einer Analyse von Wahlabsichten hat der vorgeschlagene Ansatz gezeigt, dass die Unentschlossenen mit ihm genauer charakterisiert werden können, als es mit den gängigen Methoden möglich ist. Obwohl die vorgestellte Analyse, betrachtet als ein erster Schritt, auf mengenwertige Daten angewendet wird, die vor dem Hintergrund der wissenschaftlichen Forschungsfrage in geeigneter Weise selbst konstruiert worden sind, zeigt diese dennoch klar, dass die Möglichkeiten dieses generellen Ansatzes nicht ausgeschöpft sind, so dass er auch in komplexeren Situationen angewendet werden kann. Andererseits werden unscharfe Daten durch eine mengenwertige Einfachimputation (imprecise imputation) erzeugt. Hier werden die finiten Random Sets als Ergebnis einer (unspezifizierten) Vergröberung interpretiert. Der Ansatz wird im Rahmen des Statistischen Matchings vorgeschlagen, das verwendet wird, um gemeinsame Informationen über ursprünglich nicht zusammen erhobene Merkmale zur erhalten. Dieses ist insbesondere relevant bei der Datenproduktion, beispielsweise in der amtlichen Statistik, weil es erlaubt, die verschiedenartigen Informationen aus unterschiedlichen bereits vorhandenen Datensätzen zu einen neuen Datensatz zu verschmelzen, ohne dass dafür tatsächlich Daten neu erhoben werden müssen. Zudem müssen die Daten für den Datenaustausch in geeigneter Weise anonymisiert sein. Für die spezielle Klasse der Anonymisierungstechnik der Mikroaggregation wird ihre Eignung im Hinblick auf die Verwendbarkeit in generalisierten linearen Regressionsmodellen geprüft. Hierfür werden die mikroaggregierten Daten als eine Menge von möglichen, unbeobachtbaren zu Grunde liegenden Datensituationen aufgefasst. Es werden zwei Herangehensweisen präsentiert: Als Erstes wird eine maximax-ähnliche Optimisierungsstrategie verfolgt, dabei werden die zu Grunde liegenden unbeobachtbaren Daten als Nuisance Parameter in das Regressionsmodell aufgenommen, was eine enge, aber auch über-optimistische Schätzung der Regressionskoeffizienten liefert. Zweitens wird ein Ansatz im Sinne der partiellen Identifikation angewendet, der per se schon vorsichtiger ist (als der vorherige), indem er nur die Menge aller möglichen Regressionskoeffizienten schätzt, die erhalten werden können, wenn die Schätzung auf jeder zu Grunde liegenden Datensituation durchgeführt wird. Unscharfe Daten haben gegenüber präzisen Daten den Vorteil, dass sie zusätzlich die Unsicherheit der einzelnen Beobachtungseinheit umfassen. Damit besitzen sie einen höheren Informationsgehalt. Allerdings gibt es zur Zeit nur wenige glaubwürdige statistische Modelle, die mit unscharfen Daten umgehen können. Von daher wird die Erhebung solcher Daten bei der Datenproduktion vernachlässigt, was dazu führt, dass entsprechende statistische Modelle ihr volles Potential nicht ausschöpfen können. Dies verhindert eine vollumfängliche Bewertung, wodurch wiederum die (Weiter-)Entwicklung jener Modelle gehemmt wird. Dies ist eine Variante des Henne-Ei-Problems. Diese Schrift will durch Vorschlag konkreter Methoden hinsichtlich des Umgangs mit unscharfen Daten in relevanten Anwendungssituationen Lösungswege aus der beschriebenen Situation aufzeigen und damit die entsprechende Datenproduktion anregen

    Causal inference methods for combining randomized trials and observational studies: a review

    Full text link
    With increasing data availability, causal treatment effects can be evaluated across different datasets, both randomized controlled trials (RCTs) and observational studies. RCTs isolate the effect of the treatment from that of unwanted (confounding) co-occurring effects. But they may struggle with inclusion biases, and thus lack external validity. On the other hand, large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined RCTs and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of RCTs using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models, and doubly robust estimators. We then discuss methods that combine RCTs and observational data to improve (conditional) average treatment effect estimation, handling possible unmeasured confounding in the observational data. We also connect and contrast works developed in both the potential outcomes framework and the structural causal model framework. Finally, we compare the main methods using a simulation study and real world data to analyze the effect of tranexamic acid on the mortality rate in major trauma patients. Code to implement many of the methods is provided

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure
    corecore