249,784 research outputs found

    Continuous Quantitative Risk Management in Smart Grids Using Attack Defense Trees

    Get PDF
    Although the risk assessment discipline has been studied from long ago as a means to support security investment decision-making, no holistic approach exists to continuously and quantitatively analyze cyber risks in scenarios where attacks and defenses may target different parts of Internet of Things (IoT)-based smart grid systems. In this paper, we propose a comprehensive methodology that enables informed decisions on security protection for smart grid systems by the continuous assessment of cyber risks. The solution is based on the use of attack defense trees modelled on the system and computation of the proposed risk attributes that enables an assessment of the system risks by propagating the risk attributes in the tree nodes. The method allows system risk sensitivity analyses to be performed with respect to different attack and defense scenarios, and optimizes security strategies with respect to risk minimization. The methodology proposes the use of standard security and privacy defense taxonomies from internationally recognized security control families, such as the NIST SP 800-53, which facilitates security certifications. Finally, the paper describes the validation of the methodology carried out in a real smart building energy efficiency application that combines multiple components deployed in cloud and IoT resources. The scenario demonstrates the feasibility of the method to not only perform initial quantitative estimations of system risks but also to continuously keep the risk assessment up to date according to the system conditions during operation.This research leading to these results was funded by the EUROPEAN COMMISSION, grant number 787011 (SPEAR Horizon 2020 project) and 780351 (ENACT Horizon 2020 project)

    Continuous Quantitative Risk Management in Smart Grids Using Attack Defense Trees

    Get PDF
    Although the risk assessment discipline has been studied from long ago as a means to support security investment decision-making, no holistic approach exists to continuously and quantitatively analyze cyber risks in scenarios where attacks and defenses may target different parts of Internet of Things (IoT)-based smart grid systems. In this paper, we propose a comprehensive methodology that enables informed decisions on security protection for smart grid systems by the continuous assessment of cyber risks. The solution is based on the use of attack defense trees modelled on the system and computation of the proposed risk attributes that enables an assessment of the system risks by propagating the risk attributes in the tree nodes. The method allows system risk sensitivity analyses to be performed with respect to different attack and defense scenarios, and optimizes security strategies with respect to risk minimization. The methodology proposes the use of standard security and privacy defense taxonomies from internationally recognized security control families, such as the NIST SP 800-53, which facilitates security certifications. Finally, the paper describes the validation of the methodology carried out in a real smart building energy efficiency application that combines multiple components deployed in cloud and IoT resources. The scenario demonstrates the feasibility of the method to not only perform initial quantitative estimations of system risks but also to continuously keep the risk assessment up to date according to the system conditions during operation.This research leading to these results was funded by the EUROPEAN COMMISSION, grant number 787011 (SPEAR Horizon 2020 project) and 780351 (ENACT Horizon 2020 project)

    Continuous Quantitative Risk Management in Smart Grids Using Attack Defense Trees

    Get PDF
    Although the risk assessment discipline has been studied from long ago as a means to support security investment decision-making, no holistic approach exists to continuously and quantitatively analyze cyber risks in scenarios where attacks and defenses may target different parts of Internet of Things (IoT)-based smart grid systems. In this paper, we propose a comprehensive methodology that enables informed decisions on security protection for smart grid systems by the continuous assessment of cyber risks. The solution is based on the use of attack defense trees modelled on the system and computation of the proposed risk attributes that enables an assessment of the system risks by propagating the risk attributes in the tree nodes. The method allows system risk sensitivity analyses to be performed with respect to different attack and defense scenarios, and optimizes security strategies with respect to risk minimization. The methodology proposes the use of standard security and privacy defense taxonomies from internationally recognized security control families, such as the NIST SP 800-53, which facilitates security certifications. Finally, the paper describes the validation of the methodology carried out in a real smart building energy efficiency application that combines multiple components deployed in cloud and IoT resources. The scenario demonstrates the feasibility of the method to not only perform initial quantitative estimations of system risks but also to continuously keep the risk assessment up to date according to the system conditions during operation.This research leading to these results was funded by the EUROPEAN COMMISSION, grant number 787011 (SPEAR Horizon 2020 project) and 780351 (ENACT Horizon 2020 project)

    Digital twin and Value Stream Mapping of Warehousing in Era of Industry 4.0

    Get PDF
    The rapid pace of technological development and high competition make the business employ proper approaches to assess the effectiveness of their value creation process or supply chains. The dynamic business environment enhances the uncertainty and the risk of not meeting the business goals. Warehouses might be able to address some levels of uncertainty such as demand fluctuations. Yet, inventory accumulation may lead to becoming a source of inefficiency from the lean methodology perspective. Therefore, the application of the lean methodology and its well-known method, Value Stream Mapping (VSM), has not received much attention in the warehouse efficiency assessment context. On the other hand, Industry 4.0 refers to the ongoing fourth industrial revolution promoting connectivity and information sharing with some key enabling technologies, including the internet of things (IoT), simulation, and digital twin. The digital twin technology is considered a strategic technology and offers a practical way for a system performance assessment. This paper aimed to introduce an approach that integrates the VSM method with the digital twin. The proposed structured approach can be used for the performance evaluation of a warehouse while adapting to the dynamic nature of warehousing. The developed digital model can be used for real-time warehouse performance monitoring and control when connected with the physical warehouse through communication devices. The proposed approach in this paper is applied to a real case to demonstrate its applicability

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

    Get PDF
    The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture

    Methodology for Designing Decision Support Systems for Visualising and Mitigating Supply Chain Cyber Risk from IoT Technologies

    Full text link
    This paper proposes a methodology for designing decision support systems for visualising and mitigating the Internet of Things cyber risks. Digital technologies present new cyber risk in the supply chain which are often not visible to companies participating in the supply chains. This study investigates how the Internet of Things cyber risks can be visualised and mitigated in the process of designing business and supply chain strategies. The emerging DSS methodology present new findings on how digital technologies affect business and supply chain systems. Through epistemological analysis, the article derives with a decision support system for visualising supply chain cyber risk from Internet of Things digital technologies. Such methods do not exist at present and this represents the first attempt to devise a decision support system that would enable practitioners to develop a step by step process for visualising, assessing and mitigating the emerging cyber risk from IoT technologies on shared infrastructure in legacy supply chain systems

    Internet of Things and Their Coming Perspectives: A Real Options Approach

    Get PDF
    Internet of things is developing at a dizzying rate, and companies are forced to implement it in order to maintain their operational efficiency. The high flexibility inherent to these technologies makes it necessary to apply an appropriate measure, which properly assesses risks and rewards. Real options methodology is available as a tool which fits the conditions, both economic and strategic, under which investment in internet of things technologies is developed. The contribution of this paper is twofold. On the one hand, it offers an adequate tool to assess the strategic value of investment in internet of things technologies. On the other hand, it tries to raise awareness among managers of internet of things technologies because of their potential to contribute to economic and social progress. The results of the research described in this paper highlight the importance of taking action as quickly as possible if companies want to obtain the best possible performance. In order to enhance the understanding of internet of things technologies investment, this paper provides a methodology to assess the implementation of internet of things technologies by using the real options approach; in particular, the option to expand has been proposed for use in the decision-making process

    The RFID PIA – developed by industry, agreed by regulators

    Get PDF
    This chapter discusses the privacy impact assessment (PIA) framework endorsed by the European Commission on February 11th, 2011. This PIA, the first to receive the Commission's endorsement, was developed to deal with privacy challenges associated with the deployment of radio frequency identification (RFID) technology, a key building block of the Internet of Things. The goal of this chapter is to present the methodology and key constructs of the RFID PIA Framework in more detail than was possible in the official text. RFID operators can use this article as a support document when they conduct PIAs and need to interpret the PIA Framework. The chapter begins with a history of why and how the PIA Framework for RFID came about. It then proceeds with a description of the endorsed PIA process for RFID applications and explains in detail how this process is supposed to function. It provides examples discussed during the development of the PIA Framework. These examples reflect the rationale behind and evolution of the text's methods and definitions. The chapter also provides insight into the stakeholder debates and compromises that have important implications for PIAs in general.Series: Working Papers on Information Systems, Information Business and Operation
    • …
    corecore