10,474 research outputs found

    Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach

    Get PDF
    "(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time

    Optical computing by injection-locked lasers

    Full text link
    A programmable optical computer has remained an elusive concept. To construct a practical computing primitive equivalent to an electronic Boolean logic, one should find a nonlinear phenomenon that overcomes weaknesses present in many optical processing schemes. Ideally, the nonlinearity should provide a functionally complete set of logic operations, enable ultrafast all-optical programmability, and allow cascaded operations without a change in the operating wavelength or in the signal encoding format. Here we demonstrate a programmable logic gate using an injection-locked Vertical-Cavity Surface-Emitting Laser (VCSEL). The gate program is switched between the AND and the OR operations at the rate of 1 GHz with Bit Error Ratio (BER) of 10e-6 without changes in the wavelength or in the signal encoding format. The scheme is based on nonlinearity of normalization operations, which can be used to construct any continuous complex function or operation, Boolean or otherwise.Comment: 47 pages, 7 figures in total, 2 tables. Intended for submission to Nature Physics within the next two week

    Advances in quantum machine learning

    Get PDF
    Here we discuss advances in the field of quantum machine learning. The following document offers a hybrid discussion; both reviewing the field as it is currently, and suggesting directions for further research. We include both algorithms and experimental implementations in the discussion. The field's outlook is generally positive, showing significant promise. However, we believe there are appreciable hurdles to overcome before one can claim that it is a primary application of quantum computation.Comment: 38 pages, 17 Figure
    • …
    corecore