57 research outputs found

    Curvelet and Ridgelet-based Multimodal Biometric Recognition System using Weighted Similarity Approach

    Get PDF
    Biometric security artifacts for establishing the identity of a person with high confidence have evoked enormous interest in security and access control applications for the past few years. Biometric systems based solely on unimodal biometrics often suffer from problems such as noise, intra-class variations and spoof attacks. This paper presents a novel multimodal biometric recognition system by integrating three biometric traits namely iris, fingerprint and face using weighted similarity approach. In this work, the multi-resolution features are extracted independently from query images using curvelet and ridgelet transforms, and are then compared to the enrolled templates stored in the database containing features of each biometric trait. The final decision is made by normalizing the feature vectors, assigning different weights to the modalities and fusing the computed scores using score combination techniques. This system is tested with the public unimodal databases such as CASIA–Iris-V3-Interval, FVC2004, ORL and self-built multimodal databases. Experimental results obtained shows that the designed system achieves an excellent recognition rate of 98.75 per cent and 100 per cent for the public and self-built databases respectively and provides ultra high security than unimodal biometric systems.Defence Science Journal, 2014, 64(2), pp. 106-114. DOI: http://dx.doi.org/10.14429/dsj.64.346

    Artificial intelligence in wind speed forecasting: a review

    Get PDF
    Wind energy production has had accelerated growth in recent years, reaching an annual increase of 17% in 2021. Wind speed plays a crucial role in the stability required for power grid operation. However, wind intermittency makes accurate forecasting a complicated process. Implementing new technologies has allowed the development of hybrid models and techniques, improving wind speed forecasting accuracy. Additionally, statistical and artificial intelligence methods, especially artificial neural networks, have been applied to enhance the results. However, there is a concern about identifying the main factors influencing the forecasting process and providing a basis for estimation with artificial neural network models. This paper reviews and classifies the forecasting models used in recent years according to the input model type, the pre-processing and post-processing technique, the artificial neural network model, the prediction horizon, the steps ahead number, and the evaluation metric. The research results indicate that artificial neural network (ANN)-based models can provide accurate wind forecasting and essential information about the specific location of potential wind use for a power plant by understanding the future wind speed values

    Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model

    Get PDF
    The limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of windspeed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment

    Smart Distributed Generation System Event Classification using Recurrent Neural Network-based Long Short-term Memory

    Get PDF
    High penetration of distributed generation (DG) sources into a decentralized power system causes several disturbances, making the monitoring and operation control of the system complicated. Moreover, because of being passive, modern DG systems are unable to detect and inform about these disturbances related to power quality in an intelligent approach. This paper proposed an intelligent and novel technique, capable of making real-time decisions on the occurrence of different DG events such as islanding, capacitor switching, unsymmetrical faults, load switching, and loss of parallel feeder and distinguishing these events from the normal mode of operation. This event classification technique was designed to diagnose the distinctive pattern of the time-domain signal representing a measured electrical parameter, like the voltage, at DG point of common coupling (PCC) during such events. Then different power system events were classified into their root causes using long short-term memory (LSTM), which is a deep learning algorithm for time sequence to label classification. A total of 1100 events showcasing islanding, faults, and other DG events were generated based on the model of a smart distributed generation system using a MATLAB/Simulink environment. Classifier performance was calculated using 5-fold cross-validation. The genetic algorithm (GA) was used to determine the optimum value of classification hyper-parameters and the best combination of features. The simulation results indicated that the events were classified with high precision and specificity with ten cycles of occurrences while achieving a 99.17% validation accuracy. The performance of the proposed classification technique does not degrade with the presence of noise in test data, multiple DG sources in the model, and inclusion of motor starting event in training samples

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore