2,619 research outputs found

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    Data Sharing on Untrusted Storage with Attribute-Based Encryption

    Get PDF
    Storing data on untrusted storage makes secure data sharing a challenge issue. On one hand, data access policies should be enforced on these storage servers; on the other hand, confidentiality of sensitive data should be well protected against them. Cryptographic methods are usually applied to address this issue -- only encrypted data are stored on storage servers while retaining secret key(s) to the data owner herself; user access is granted by issuing the corresponding data decryption keys. The main challenges for cryptographic methods include simultaneously achieving system scalability and fine-grained data access control, efficient key/user management, user accountability and etc. To address these challenge issues, this dissertation studies and enhances a novel public-key cryptography -- attribute-based encryption (ABE), and applies it for fine-grained data access control on untrusted storage. The first part of this dissertation discusses the necessity of applying ABE to secure data sharing on untrusted storage and addresses several security issues for ABE. More specifically, we propose three enhancement schemes for ABE: In the first enhancement scheme, we focus on how to revoke users in ABE with the help of untrusted servers. In this work, we enable the data owner to delegate most computation-intensive tasks pertained to user revocation to untrusted servers without disclosing data content to them. In the second enhancement scheme, we address key abuse attacks in ABE, in which authorized but malicious users abuse their access privileges by sharing their decryption keys with unauthorized users. Our proposed scheme makes it possible for the data owner to efficiently disclose the original key owner\u27s identity merely by checking the input and output of a suspicious user\u27s decryption device. Our third enhancement schemes study the issue of privacy preservation in ABE. Specifically, our proposed schemes hide the data owner\u27s access policy not only to the untrusted servers but also to all the users. The second part presents our ABE-based secure data sharing solutions for two specific applications -- Cloud Computing and Wireless Sensor Networks (WSNs). In Cloud Computing cloud servers are usually operated by third-party providers, which are almost certain to be outside the trust domain of cloud users. To secure data storage and sharing for cloud users, our proposed scheme lets the data owner (also a cloud user) generate her own ABE keys for data encryption and take the full control on key distribution/revocation. The main challenge in this work is to make the computation load affordable to the data owner and data consumers (both are cloud users). We address this challenge by uniquely combining various computation delegation techniques with ABE and allow both the data owner and data consumers to securely mitigate most computation-intensive tasks to cloud servers which are envisaged to have unlimited resources. In WSNs, wireless sensor nodes are often unattendedly deployed in the field and vulnerable to strong attacks such as memory breach. For securing storage and sharing of data on distributed storage sensor nodes while retaining data confidentiality, sensor nodes encrypt their collected data using ABE public keys and store encrypted data on storage nodes. Authorized users are given corresponding decryption keys to read data. The main challenge in this case is that sensor nodes are extremely resource-constrained and can just afford limited computation/communication load. Taking this into account we divide the lifetime of sensor nodes into phases and distribute the computation tasks into each phase. We also revised the original ABE scheme to make the overhead pertained to user revocation minimal for sensor nodes. Feasibility of the scheme is demonstrated by experiments on real sensor platforms

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance

    Get PDF
    Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data management in large-scale IoT systems by migrating the data storage and management tasks to cloud service providers (CSPs). However, there also exist many data security and privacy issues that must be well addressed in order to allow the wide adoption of the approach. To protect data confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are still insufficient in addressing some challenging security problems, especially when dealing with compromised or leaked user secret keys due to different reasons. In this paper, we present a practical attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-based encryption scheme that permits the data owner to efficiently manage the credentials of data users. Our proposed system can efficiently deal with both secret key revocation for corrupted users and accidental decryption key exposure for honest users. We analyze the security of our scheme with formal proofs, and demonstrate the high performance of the proposed system via experiments
    • …
    corecore