32 research outputs found

    ID-based user-centric data usage auditing scheme for distributed environments

    Get PDF
    Recent years have witnessed the trend of increasingly relying on remote and distributed infrastructures, mainly owned and managed by third parties. This increased the number of reported incidents of security breaches compromising users' personal data, where involved entities may massively collect and process massive amounts of such data. Toward these challenges, this paper combines hierarchical Identity Based Cryptographic (IBC) mechanisms with emerging blockchain technologies and introduces a blockchain-based data usage auditing architecture ensuring availability and accountability in a personal data-preserving fashion. The proposed approach relies on smart auditable contracts deployed in blockchain infrastructures. Thus, it offers transparent and controlled data access, sharing and processing, so that unauthorized entities cannot process data without data subjects' consent. Moreover, thanks to the usage of hierarchical ID-based encryption and signature schemes, the proposed solution protects and ensures the confidentiality of users' personal data shared with multiple data controllers and processors. It also provides auditing capacities with tamper-proof evidences for data usage compliance, supported by the intrinsic properties of the blockchain technology

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Access Control Mechanisms in Named Data Networks:A Comprehensive Survey

    Get PDF
    Information-Centric Networking (ICN) has recently emerged as a prominent candidate for the Future Internet Architecture (FIA) that addresses existing issues with the host-centric communication model of the current TCP/IP-based Internet. Named Data Networking (NDN) is one of the most recent and active ICN architectures that provides a clean slate approach for Internet communication. NDN provides intrinsic content security where security is directly provided to the content instead of communication channel. Among other security aspects, Access Control (AC) rules specify the privileges for the entities that can access the content. In TCP/IP-based AC systems, due to the client-server communication model, the servers control which client can access a particular content. In contrast, ICN-based networks use content names to drive communication and decouple the content from its original location. This phenomenon leads to the loss of control over the content causing different challenges for the realization of efficient AC mechanisms. To date, considerable efforts have been made to develop various AC mechanisms in NDN. In this paper, we provide a detailed and comprehensive survey of the AC mechanisms in NDN. We follow a holistic approach towards AC in NDN where we first summarize the ICN paradigm, describe the changes from channel-based security to content-based security and highlight different cryptographic algorithms and security protocols in NDN. We then classify the existing AC mechanisms into two main categories: Encryption-based AC and Encryption-independent AC. Each category has different classes based on the working principle of AC (e.g., Attribute-based AC, Name-based AC, Identity-based AC, etc). Finally, we present the lessons learned from the existing AC mechanisms and identify the challenges of NDN-based AC at large, highlighting future research directions for the community.Comment: This paper has been accepted for publication by the ACM Computing Surveys. The final version will be published by the AC

    User-Centric Security and Privacy Mechanisms in Untrusted Networking and Computing Environments

    Get PDF
    Our modern society is increasingly relying on the collection, processing, and sharing of digital information. There are two fundamental trends: (1) Enabled by the rapid developments in sensor, wireless, and networking technologies, communication and networking are becoming more and more pervasive and ad hoc. (2) Driven by the explosive growth of hardware and software capabilities, computation power is becoming a public utility and information is often stored in centralized servers which facilitate ubiquitous access and sharing. Many emerging platforms and systems hinge on both dimensions, such as E-healthcare and Smart Grid. However, the majority information handled by these critical systems is usually sensitive and of high value, while various security breaches could compromise the social welfare of these systems. Thus there is an urgent need to develop security and privacy mechanisms to protect the authenticity, integrity and confidentiality of the collected data, and to control the disclosure of private information. In achieving that, two unique challenges arise: (1) There lacks centralized trusted parties in pervasive networking; (2) The remote data servers tend not to be trusted by system users in handling their data. They make existing security solutions developed for traditional networked information systems unsuitable. To this end, in this dissertation we propose a series of user-centric security and privacy mechanisms that resolve these challenging issues in untrusted network and computing environments, spanning wireless body area networks (WBAN), mobile social networks (MSN), and cloud computing. The main contributions of this dissertation are fourfold. First, we propose a secure ad hoc trust initialization protocol for WBAN, without relying on any pre-established security context among nodes, while defending against a powerful wireless attacker that may or may not compromise sensor nodes. The protocol is highly usable for a human user. Second, we present novel schemes for sharing sensitive information among distributed mobile hosts in MSN which preserves user privacy, where the users neither need to fully trust each other nor rely on any central trusted party. Third, to realize owner-controlled sharing of sensitive data stored on untrusted servers, we put forward a data access control framework using Multi-Authority Attribute-Based Encryption (ABE), that supports scalable fine-grained access and on-demand user revocation, and is free of key-escrow. Finally, we propose mechanisms for authorized keyword search over encrypted data on untrusted servers, with efficient multi-dimensional range, subset and equality query capabilities, and with enhanced search privacy. The common characteristic of our contributions is they minimize the extent of trust that users must place in the corresponding network or computing environments, in a way that is user-centric, i.e., favoring individual owners/users

    Security, Privacy and Risks Within Smart Cities: Literature Review and Development of a Smart City Interaction Framework

    Get PDF
    YesThe complex and interdependent nature of smart cities raises significant political, technical, and socioeconomic challenges for designers, integrators and organisations involved in administrating these new entities. An increasing number of studies focus on the security, privacy and risks within smart cities, highlighting the threats relating to information security and challenges for smart city infrastructure in the management and processing of personal data. This study analyses many of these challenges, offers a valuable synthesis of the relevant key literature, and develops a smart city interaction framework. The study is organised around a number of key themes within smart cities research: privacy and security of mobile devices and services; smart city infrastructure, power systems, healthcare, frameworks, algorithms and protocols to improve security and privacy, operational threats for smart cities, use and adoption of smart services by citizens, use of blockchain and use of social media. This comprehensive review provides a useful perspective on many of the key issues and offers key direction for future studies. The findings of this study can provide an informative research framework and reference point for academics and practitioners

    A reliable trust-aware reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements in terms of delivery reliability, attack resiliency, computational overhead and energy efficiency. This doctoral research therefore aims to advance the state of the art in routing by proposing a lightweight, reliable routing protocol for WMSN. Ensuring a reliable path between the source and the destination requires making trustaware routing decisions to avoid untrustworthy paths. A lightweight and effective Trust Management System (TMS) has been developed to evaluate the trust relationship between the sensor nodes with a view to differentiating between trustworthy nodes and untrustworthy ones. Moreover, a resource-conservative Reinforcement Learning (RL) model has been proposed to reduce the computational overhead, along with two updating methods to speed up the algorithm convergence. The reward function is re-defined as a punishment, combining the proposed trust management system to defend against well-known dropping attacks. Furthermore, with a view to addressing the inborn overestimation problem in Q-learning-based routing protocols, we adopted double Q-learning to overcome the positive bias of using a single estimator. An energy model is integrated with the reward function to enhance the network lifetime and balance energy consumption across the network. The proposed energy model uses only local information to avoid the resource burdens and the security concerns of exchanging energy information. Finally, a realistic trust management testbed has been developed to overcome the limitations of using numerical analysis to evaluate proposed trust management schemes, particularly in the context of WMSN. The proposed testbed has been developed as an additional module to the NS-3 simulator to fulfill usability, generalisability, flexibility, scalability and high-performance requirements
    corecore