4,782 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    The Role of the Internet of Things in Network Resilience

    Get PDF
    Disasters lead to devastating structural damage not only to buildings and transport infrastructure, but also to other critical infrastructure, such as the power grid and communication backbones. Following such an event, the availability of minimal communication services is however crucial to allow efficient and coordinated disaster response, to enable timely public information, or to provide individuals in need with a default mechanism to post emergency messages. The Internet of Things consists in the massive deployment of heterogeneous devices, most of which battery-powered, and interconnected via wireless network interfaces. Typical IoT communication architectures enables such IoT devices to not only connect to the communication backbone (i.e. the Internet) using an infrastructure-based wireless network paradigm, but also to communicate with one another autonomously, without the help of any infrastructure, using a spontaneous wireless network paradigm. In this paper, we argue that the vast deployment of IoT-enabled devices could bring benefits in terms of data network resilience in face of disaster. Leveraging their spontaneous wireless networking capabilities, IoT devices could enable minimal communication services (e.g. emergency micro-message delivery) while the conventional communication infrastructure is out of service. We identify the main challenges that must be addressed in order to realize this potential in practice. These challenges concern various technical aspects, including physical connectivity requirements, network protocol stack enhancements, data traffic prioritization schemes, as well as social and political aspects

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Information Systems for Large-Scale Event Management: A Case Study

    Get PDF
    Information systems (IS) have considerable use in supporting large-scale communication and coordination. This is especially important in contexts such as major event and crisis management which have complex requirements on people and technology. IS facilitate the dissemination of real-time information and coordination among decision makers, and thereby the management of the entire event. This paper describes a case of management and deployment of IS for a large-scale event as an exemplar in this area. Singapore won the bid to host a major international event, the Annual Meetings of the International Monetary Fund and World Bank, collectively known as S2006. However, there were complex requirements and daunting challenges to be overcome in managing such a high-profile and large-scale event. The paper describes how the Committee in charge delivered the IT infrastructure and systems for this large-scale event with 23,700 participants from 184 countries. It suggests several lessons for IT executives in charge of managing large-scale events, mainly for planned (e.g., sports events) and to someextent for unplanned (e.g., Japan tsunami or BP oil spill crisis) events. Particularly, it highlights the need for advance preparedness, use of IS for situation awareness, cultivating relationships for communication and coordination, and the importance of vendor management and project management skills. These lessons are valuable for IS deployment for large-scale communication and coordination for future mega-events and to some degree for preparedness for unforeseen events. Available at: https://aisel.aisnet.org/pajais/vol4/iss3/3
    corecore