47,575 research outputs found

    APPLICATIONS OF REMOTE SENSING: A REVIEW

    Get PDF
    Objective: This paper presents a comprehensive review of the basic principles of the microwave remote sensing technique, Capabilities of microwave sensors for the remote sensing, several studies of Applications of Remote sensing and the status of current methods. The spectral characteristic of the main earth surface feature is Soil Radiation interaction characteristics of earth and atmosphere in different regions of electromagnetic spectrum are very useful for identifying and characterizing earth and atmospheric features. It gives the information needed for soil management programs in order to satisfy the environmental conditions. The principle objective of this review is to present particularly soil studies based on Remote sensors. Materials and Methods: Remote sensing measures electromagnetic radiation that interacts with the atmosphere and objects. Remote sensing is considered a primary means of acquiring spatial data. The Remote Sensing is a multi-disciplinary science. Remote sensing uses the entire electromagnetic spectrum, ranging from short wavelengths (for example, ultraviolet) to long wavelengths (microwaves). The characteristics of soil that determine its reflectance properties are its moisture content, organic matter content, texture, structure and iron oxide content. Results: Interactions of electromagnetic radiation with the surface of the Earth can provide information not only on the distance between the sensor and the object but also on the direction, intensity, wavelength, and polarization of the electromagnetic radiation. Conclusion: Recent technological advances in satellite remote sensing have helped to overcome the limitation of conventional soil survey and providing a new outlook for soil survey and mapping

    Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.

    Get PDF
    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30–50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Polarization-resolved sensing with tilted fiber Bragg gratings: theory and limits of detection

    Get PDF
    Polarization based sensing with tilted fiber Bragg grating (TFBG) sensors is analysed theoretically by two alternative approaches. The first method is based on tracking the grating transmission for two orthogonal states of linear polarized light that are extracted from the measured Jones matrix or Stokes vectors of the TFBG transmission spectra. The second method is based on the measurements along the system principle axes and polarization dependent loss (PDL) parameter, also calculated from measured data. It is shown that the frequent crossing of the Jones matrix eigenvalues as a function of wavelength leads to a non-physical interchange of the calculated principal axes; a method to remove this unwanted mathematical artefact and to restore the order of the system eigenvalues and the corresponding principal axes is provided. A comparison of the two approaches reveals that the PDL method provides a smaller standard deviation and therefore lower limit of detection in refractometric sensing. Furthermore, the polarization analysis of the measured spectra allows for the identification of the principal states of polarization of the sensor system and consequentially for the calculation of the transmission spectrum for any incident polarization state. The stability of the orientation of the system principal axes is also investigated as a function of wavelength

    Remote Sensing of Chiral Signatures on Mars

    Get PDF
    We describe circular polarization as a remote sensing diagnostic of chiral signatures which may be applied to Mars. The remarkable phenomenon of homochirality provides a unique biosignature which can be amenable to remote sensing through circular polarization spectroscopy. The natural tendency of microbes to congregate in close knit communities would be beneficial for such a survey. Observations of selected areas of the Mars surface could reveal chiral signatures and hence explore the possibility of extant or preserved biological material. We describe a new instrumental technique that may enable observations of this form.Comment: 14 pages, 3 figures; to be published in Planetary and Space Scienc

    One-shot ultraspectral imaging with reconfigurable metasurfaces

    Full text link
    One-shot spectral imaging that can obtain spectral information from thousands of different points in space at one time has always been difficult to achieve. Its realization makes it possible to get spatial real-time dynamic spectral information, which is extremely important for both fundamental scientific research and various practical applications. In this study, a one-shot ultraspectral imaging device fitting thousands of micro-spectrometers (6336 pixels) on a chip no larger than 0.5 cm2^2, is proposed and demonstrated. Exotic light modulation is achieved by using a unique reconfigurable metasurface supercell with 158400 metasurface units, which enables 6336 micro-spectrometers with dynamic image-adaptive performances to simultaneously guarantee the density of spectral pixels and the quality of spectral reconstruction. Additionally, by constructing a new algorithm based on compressive sensing, the snapshot device can reconstruct ultraspectral imaging information (Δλ\Delta\lambda/λ\lambda~0.001) covering a broad (300-nm-wide) visible spectrum with an ultra-high center-wavelength accuracy of 0.04-nm standard deviation and spectral resolution of 0.8 nm. This scheme of reconfigurable metasurfaces makes the device can be directly extended to almost any commercial camera with different spectral bands to seamlessly switch the information between image and spectral image, and will open up a new space for the application of spectral analysis combining with image recognition and intellisense
    • …
    corecore