292 research outputs found

    Development of Gaussian Learning Algorithms for Early Detection of Alzheimer\u27s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia affecting 10% of the population over the age of 65 and the growing costs in managing AD are estimated to be $259 billion, according to data reported in the 2017 by the Alzheimer\u27s Association. Moreover, with cognitive decline, daily life of the affected persons and their families are severely impacted. Taking advantage of the diagnosis of AD and its prodromal stage of mild cognitive impairment (MCI), an early treatment may help patients preserve the quality of life and slow the progression of the disease, even though the underlying disease cannot be reversed or stopped. This research aims to develop Gaussian learning algorithms, natural language processing (NLP) techniques, and mathematical models to effectively delineate the MCI participants from the cognitively normal (CN) group, and identify the most significant brain regions and patterns of changes associated with the progression of AD. The focus will be placed on the earliest manifestations of the disease (early MCI or EMCI) to plan for effective curative/therapeutic interventions and protocols. Multiple modalities of biomarkers have been found to be significantly sensitive in assessing the progression of AD. In this work, several novel multimodal classification frameworks based on proposed Gaussian Learning algorithms are created and applied to neuroimaging data. Classification based on the combination of structural magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers is seen as the most reliable approach for high-accuracy classification. Additionally, changes in linguistic complexity may provide complementary information for the diagnosis and prognosis of AD. For this research endeavor, an NLP-oriented neuropsychological assessment is developed to automatically analyze the distinguishing characteristics of text data in MCI group versus those in CN group. Early findings suggest significant linguistic differences between CN and MCI subjects in terms of word usage, vocabulary, recall, fragmented sentences. In summary, the results obtained indicate a high potential of the neuroimaging-based classification and NLP-oriented assessment to be utilized as a practically computer aided diagnosis system for classification and prediction of AD and its prodromal stages. Future work will ultimately focus on early signs of AD that could help in the planning of curative and therapeutic intervention to slow the progression of the disease

    A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer’s disease and behavioral variant frontotemporal dementia

    Get PDF
    The clinical distinction between Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) remains challenging and largely dependent on the experience of the clinician. This study investigates whether objective machine learning algorithms using supportive neuroimaging and neuropsychological clinical features can aid the distinction between both diseases. Retrospective neuroimaging and neuropsychological data of 166 participants (54 AD; 55 bvFTD; 57 healthy controls) was analyzed via a Naïve Bayes classification model. A subgroup of patients (n = 22) had pathologically-confirmed diagnoses. Results show that a combination of gray matter atrophy and neuropsychological features allowed a correct classification of 61.47% of cases at clinical presentation. More importantly, there was a clear dissociation between imaging and neuropsychological features, with the latter having the greater diagnostic accuracy (respectively 51.38 vs. 62.39%). These findings indicate that, at presentation, machine learning classification of bvFTD and AD is mostly based on cognitive and not imaging features. This clearly highlights the urgent need to develop better biomarkers for both diseases, but also emphasizes the value of machine learning in determining the predictive diagnostic features in neurodegeneration

    Multi-dimensional profiling of elderly at-risk for Alzheimer's disease in a differential framework

    Get PDF
    International audienceThe utility of EEG in Alzheimer’s disease (AD) research has been demonstrated over several decades in numerous studies. EEG markers have been employed successfully to investigate AD-related alterations in prodromal AD and AD dementia. Preclinical AD is a recent concept and a novel target for clinical research. This project tackles two issues: first, AD prediction at the preclinical sta ge, by exploiting the multimodal INSIGHT-preAD database, acquired at the Pitié-Salpetrière Hospital; second, an automatic AD diagnosis in a differential framework, by exploiting another large-scale EEG database, acquired at Charles-Foix Hospital. In this project, we will investigate AD predictors at preclinical stage, using EEG data of only subjective Memory Complainers in order to establish a cognitive profiling of elderly at-risk. We will also identify EEG markers for AD detection at early stages in a di fferential diagnosis context. The correlation between EEG markers and clinical biomarkers will be also assessed for a better characterization of the retrieved profiles and a better understanding on the severity of the cognitive disorder. The exploited larg e-scale complementary data offer the opportunity to investigate the full spectrum of the AD neuro-degeneration changes in the brain, using a big data approach and multimodal patient profiling based on resting-state EEG marker

    The Characterization of Alzheimer’s Disease and the Development of Early Detection Paradigms: Insights from Nosology, Biomarkers and Machine Learning

    Get PDF
    Alzheimer’s Disease (AD) is the only condition in the top ten leading causes of death for which we do not have an effective treatment that prevents, slows, or stops its progression. Our ability to design useful interventions relies on (a) increasing our understanding of the pathological process of AD and (b) improving our ability for its early detection. These goals are impeded by our current reliance on the clinical symptoms of AD for its diagnosis. This characterizations of AD often falsely assumes a unified, underlying AD-specific pathology for similar presentations of dementia that leads to inconsistent diagnoses. It also hinges on postmortem verification, and so is not a helpful method for identifying patients and research subjects in the beginning phases of the pathophysiological process. Instead, a new biomarker-based approach provides a more biological understanding of the disease and can detect pathological changes up to 20 years before the clinical symptoms emerge. Subjects are assigned a profile according to their biomarker measures of amyloidosis (A), tauopathy (T) and neurodegeneration (N) that reflects their underlying pathology in vivo. AD is confirmed as the underlying pathology when subjects have abnormal values of both amyloid and tauopathy biomarkers, and so have a biomarker profile of A+T+(N)- or A+T+(N)+. This new biomarker based characterization of AD can be combined with machine learning techniques in multimodal classification studies to shed light on the elements of the AD pathological process and develop early detection paradigms. A guiding research framework is proposed for the development of reliable, biologically-valid and interpretable multimodal classification models

    Large-scale neuroimaging in Alzheimer’s disease and normal aging

    Get PDF
    Large-scale neuroimaging data is becoming increasingly available, providing a rich data source with which to study neurological conditions. In this thesis, I demonstrate the utility of large-scale neuroimaging as it applies to Alzheimer’s disease (AD) and normal aging, using univariate parametric mapping, regional analysis, and advanced machine learning. Specifically, this thesis covers: 1) validation and extension of prior studies using large-scale datasets; 2) AD diagnosis and normal aging evaluation empowered by large-scale datasets and advanced deep learning algorithms; 3) enhancement of cerebral blood volume (CBV) fMRI utility with retrospective CBV-fMRI technique. First, I demonstrated the utility of large-scale datasets for validating and extending prior studies using univariate analytics. I presented a study localizing AD-vulnerable regions more reliably and with better anatomical resolution using data from more than 350 subjects. Following a similar approach, I investigated the structural characteristics of healthy APOE ε4 homozygous subjects screened from a large-scale community-based study. To study the neuroimaging signatures of normal aging, we performed a large-scale joint CBV-fMRI and structural MRI study covering age 20-70s, and a structural MRI study of normal aging covering the full age-span, with the elder group screened from a large-scale clinic-based study ensuring no evidence of AD using both longitudinal follow-up and cerebrospinal fluid (CSF) biomarkers evidences. Second, I performed deep learning neuroimaging studies for AD diagnosis and normal aging evaluation, and investigated the regionality associated with each task. I developed an AD diagnosis method using a 3D convolutional neural network model trained and evaluated on ~4,600 structural MRI scans and further investigated a series of novel regionality analyses. I further extensively studied the utility of the structural MRI summary measure derived from the deep learning model in prodromal AD detection. This study constitutes a general analytic framework, which was followed to evaluate normal aging by performing deep learning-based age estimation in cognitively normal population using more than 6,000 scans. The deep learning neuroimaging models classified AD and estimated age with high accuracy, and also revealed regional patterns conforming to neuropathophysiology. The deep learning derived MRI measure demonstrated potential clinical utility, outperforming other AD pathology measures and biomarkers. In addition, I explored the utility of deep learning on positron emission tomography (PET) data for AD diagnosis and regionality analyses, further demonstrating the broad utility and generalizability of the method. Finally, I introduced a technique enabling CBV generation retrospectively from clinical contrast-enhanced scans. The derivation of meaningful functional measures from such clinical scans is only possible through calibration to a reference, which was built from the largest collection of research CBV-fMRI scans from our lab. This method was validated in an epilepsy study and demonstrated the potential to enhance the utility of CBV-fMRI by enriching the CBV-fMRI dataset. This technique is also applicable to AD and normal aging studies, and potentially enables deep learning based analytic approaches applied on CBV-fMRI with similar pipelines used in structural MRI. Collectively, this thesis demonstrates how mechanistic and diagnostic information on brain disorders can be extracted from large-scale neuroimaging data, using both classical statistical methods and advanced machine learning
    corecore