909 research outputs found

    Malicious Digital Penetration of United States Weaponized Military Unmanned Aerial Vehicle Systems: A National Security Perspective Concerning the Complexity of Military UAVs and Hacking

    Get PDF
    The United States’ (US) military unmanned aerial vehicle (UAV) has seen increased usage under the post 9/11 military engagements in the Middle East, Afghanistan, and within American borders. However, the very digital networks controlling these aircrafts are now enduring malicious intrusions (hacking) by America’s enemies. . The digital intrusions serve as a presage over the very digital networks the US relies upon to safeguard its national security and interests and domestic territory. The complexity surrounding the hacking of US military UAVs appears to be increasing, given the advancements in digital networks and the seemingly inauspicious nature of artificial intelligence and autonomous systems. Being most victimized by malicious digital intrusions, the US continues its military components towards growing dependence upon digital networks in advancing warfare and national security and interests. Thus, America’s netcentric warfare perspectives may perpetuate a chaotic environment where the use of military force is the sole means of safeguarding its digital networks

    Cyber Risk Assessment and Scoring Model for Small Unmanned Aerial Vehicles

    Get PDF
    The commercial-off-the-shelf small Unmanned Aerial Vehicle (UAV) market is expanding rapidly in response to interest from hobbyists, commercial businesses, and military operators. The core commercial mission set directly relates to many current military requirements and strategies, with a priority on short range, low cost, real time aerial imaging, and limited modular payloads. These small vehicles present small radar cross sections, low heat signatures, and carry a variety of sensors and payloads. As with many new technologies, security seems secondary to the goal of reaching the market as soon as innovation is viable. Research indicates a growth in exploits and vulnerabilities applicable to small UAV systems, from individual UAV guidance and autopilot controls to the mobile ground station devices that may be as simple as a cellphone application controlling several aircraft. Even if developers strive to improve the security of small UAVs, consumers are left without meaningful insight into the hardware and software protections installed when buying these systems. To date, there is no marketed or accredited risk index for small UAVs. Building from similar domains of aircraft operation, information technologies, cyber-physical systems, and cyber insurance, a cyber risk assessment methodology tailored for small UAVs is proposed and presented in this research. Through case studies of popular models and tailored mission-environment scenarios, the assessment is shown to meet the three objectives of ease-of-use, breadth, and readability. By allowing a cyber risk assessment at or before acquisition, organizations and individuals will be able to accurately compare and choose the best aircraft for their mission

    Trust and Suspicion as a Function of Cyber Security in Human Machine Team (HMT) of Unmanned Systems

    Get PDF
    The research focuses on cyber-attacks on cyber-physical systems of the unmanned vehicles that are characteristically used in the military, particularly the Air Force. Unmanned systems are exposed to various risks as the capacity of cyber attackers continue to expand, raising the need for speedy and immediate responses. The advances in military technologies form the basis of the research that explores the challenges faced in the timely detection and response to cyber-attacks. The purpose of the research is to study the connections between operator suspicion and the detection and response to cyber-attacks alongside the identification of theory of suspicion as the theoretical framework. The paper further presents the experiment used and the interview questions that offer the basis for the recommendations and importance of the research while answering the research questions. The conclusion from the literature review, interview, and experiment indicates the need for training among operators in the Air Force to reinforce their capacity in the detection and response to cyber-attacks and other adverse events that could compromise the execution of the mission established for unmanned systems. The research offers recommendations that can be implemented by the Royal Saudi Air Force (RSAF) in enhancing the security measures of unmanned systems

    A systematic literature review on Security of Unmanned Aerial Vehicle Systems

    Full text link
    Unmanned aerial vehicles (UAVs) are becoming more common, and their operational range is expanding tremendously, making the security aspect of the inquiry essential. This study does a thorough assessment of the literature to determine the most common cyberattacks and the effects they have on UAV assaults on civilian targets. The STRIDE assault paradigm, the challenge they present, and the proper tools for the attack are used to categorize the cyber dangers discussed in this paper. Spoofing and denial of service assaults are the most prevalent types of UAV cyberattacks and have the best results. No attack style demands the employment of a hard-to-reach gadget, indicating that the security environment currently necessitates improvements to UAV use in civilian applications.Comment: 10 Pages, 4 Figure

    Risk driven models & security framework for drone operation in GNSS-denied environments

    Get PDF
    Flying machines in the air without human inhabitation has moved from abstracts to reality and the concept of unmanned aerial vehicles continues to evolve. Drones are popularly known to use GPS and other forms of GNSS for navigation, but this has unfortunately opened them up to spoofing and other forms of cybersecurity threats. The use of computer vision to find location through pre-stored satellite images has become a suggested solution but this gives rise to security challenges in the form of spoofing, tampering, denial of service and other forms of attacks. These security challenges are reviewed with appropriate requirements recommended. This research uses the STRIDE threat analysis model to analyse threats in drone operation in GNSS-denied environment. Other threat models were considered including DREAD and PASTA, but STRIDE is chosen because of its suitability and the complementary ability it serves to other analytical methods used in this work. Research work is taken further to divide the drone system into units based in similarities in functions and architecture. They are then subjected to Failure Mode and Effects Analysis (FMEA), and Fault Tree Analysis (FTA). The STRIDE threat model is used as base events for the FTA and an FMEA is conducted based on adaptations from IEC 62443-1-1, Network and System Security- Terminology, concepts, and models and IEC 62443-3-2, security risk assessment for system design. The FTA and FMEA are widely known for functional safety purposes but there is a divergent use for the tools where we consider cybersecurity vulnerabilities specifically, instead of faults. The IEC 62443 series has become synonymous with Industrial Automation and Control Systems. However, inspiration is drawn from that series for this work because, drones, as much as any technological gadget in play recently, falls under a growing umbrella of quickly evolving devices, known as Internet of Things (IoT). These IoT devices can be principally considered as part of Industrial Automation and Control Systems. Results from the analysis are used to recommend security standards & requirements that can be applied in drone operation in GNSS-denied environments. The framework recommended in this research is consistent with IEC 62443-3-3, System security requirements and security levels and has the following categorization from IEC 62443-1-1, identification, and authentication control, use control, system integrity, data confidentiality, restricted data flow, timely response to events and resource availability. The recommended framework is applicable and relevant to military, private and commercial drone deployment because the framework can be adapted and further tweaked to suit the context which it is intended for. Application of this framework in drone operation in GNSS denied environment will greatly improve upon the cyber resilience of the drone network system

    An Integrated Framework for Sensing Radio Frequency Spectrum Attacks on Medical Delivery Drones

    Full text link
    Drone susceptibility to jamming or spoofing attacks of GPS, RF, Wi-Fi, and operator signals presents a danger to future medical delivery systems. A detection framework capable of sensing attacks on drones could provide the capability for active responses. The identification of interference attacks has applicability in medical delivery, disaster zone relief, and FAA enforcement against illegal jamming activities. A gap exists in the literature for solo or swarm-based drones to identify radio frequency spectrum attacks. Any non-delivery specific function, such as attack sensing, added to a drone involves a weight increase and additional complexity; therefore, the value must exceed the disadvantages. Medical delivery, high-value cargo, and disaster zone applications could present a value proposition which overcomes the additional costs. The paper examines types of attacks against drones and describes a framework for designing an attack detection system with active response capabilities for improving the reliability of delivery and other medical applications.Comment: 7 pages, 1 figures, 5 table

    A Trusted Platform for Unmanned Aerial Vehicle-Based Bridge Inspection Management System

    Get PDF
    Bridge inspection has a pivotal role in assuring the safety of critical structures constituting society. However, high cost, worker safety, and low objectivity of quality are classic problems in traditional visual inspection. Recent trends in bridge inspection have led to a proliferation of research utilizing Unmanned Aerial Vehicles (UAVs). This thesis proposes a Trusted Platform for Bridge Inspection Management System (Trusted-BIMS) for safe and efficient bridge inspection by proving the UAV-based inspection process and improving the prototype of the previous study. Designed based on a Zero-Trust (ZT) strategy, Trusted-BIMS consist of (1) a database-driven web framework with security features for bridge inspection management, (2) a mobile interface supporting the inspection data collection using UAVs, and (3) a mutual authentication protocol for the Internet of Things (IoTs). The server script language used to implement the web system was PHP and React Native was used for the mobile application development. The secure communication algorithm used server-side PHP and client-side JavaScript, and MySQL was adopted as the database. This paper provides an overview and details of Trusted-BIMS and demonstrates the overall process of bridge inspection using UAVs and applied technologies to the proposed platform. The result of this research will make an important contribution to the field of UAV-based bridge inspection. Further research can be conducted on refined implementations of security algorithms, more comprehensive security schemes, and machine learning technology to reduce human intervention

    Current Trends in Small Unmanned Aircraft Systems: Implications for U.S. Special Operations Forces

    Get PDF
    This paper assesses current trends in small unmanned aircraft systems (sUAS) technology and its applications to the Special Operations Forces (SOF) community. Of critical concern to SOF is that commercial-off-the-shelf (COTS) sUAS technologies are relatively inexpensive, improving at a dramatic rate, and widely available throughout the world. Insurgents, terrorists, violent extremist organizations (VEOs) and other nefarious actors have used COTS sUAS to conduct offensive attacks as well as to develop battlefield situation awareness; these technological improvements combined with their widespread availability will require enhanced and rapidly adaptive counter-sUAS measures in the future. To understand the most current trends in the unmanned aircraft systems (UAS) technology and their applicability to SOF, this paper analyzes the definition and classification of sUAS, their major applications, and characteristics. In the military context, UAS are principally used for intelligence, surveillance, and reconnaissance (ISR), border security, counterinsurgency, attack and strike, target identification and designation, communications relay, electronic attack, remote sensing, and aerial mapping. As technology improves, smaller versions of sUAS will be used by both friendly operators and maligned actors (insurgents, terrorists, VEOs, nation states) as force multipliers for military operations. As armed forces around the world continue to invest in research and development of sUAS technologies, there will be tremendous potential to revolutionize warfare, particularly in context of special operations. Consequently, the use of sUAS technology by SOF is likely to escalate over the next decade, as is the likelihood of sUAS countermeasures due to the availability of the technology within nefarious organizations

    InfoSwarms: Drone Swarms and Information Warfare

    Get PDF
    Drone swarms, which can be used at sea, on land, in the air, and even in space, are fundamentally information-dependent weapons. No study to date has examined drone swarms in the context of information warfare writ large. This article explores the dependence of these swarms on information and the resultant connections with areas of information warfare—electronic, cyber, space, and psychological—drawing on open-source research and qualitative reasoning. Overall, the article offers insights into how this important emerging technology fits into the broader defense ecosystem and outlines practical approaches to strengthening related information warfare capabilities

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp
    • …
    corecore