1,786 research outputs found

    Re-injecting Innovation into the Space Test Process

    Get PDF
    The U.S. Space industry is losing market share to the International community, both in the launch vehicle and satellite fabrication marketplaces. Although many argue that this is due to restrictive export controls, this paper presents the concept that the erosion of innovation in the U.S. Space Industry has caused this downturn in U. S. market share. As U.S. space programs have grown in scope and cost, the capacity to accept risk as part of the development process has diminished. As a result, the U.S. Space industry is experiencing erosion in innovation, the foundation of our national security and space commerce leadership for the past four decades. To restore and regain lost market share, we must develop rapid access to space for testing of new ideas and must couple these efforts to hands-on university programs in space technologies that will train future U.S. space technologists. This paper summarizes findings on an innovative approach to using dedicated pico-satellite (CubeSat) space test capabilities for low-cost and regularly scheduled component testing. Schafer Corporation and Stanford University’s Space Systems Development Laboratory (SSDL) were awarded a contract in August, 2000 by the National Reconnaissance Office / Office of Space Launch (NRO/OSL) to investigate new, evolutionary and revolutionary approaches to facilitate low-cost space testing opportunities. The contract and study are entitled Proactive Rideshare Opportunity Brokering Services (PROBS) . This paper is based on the interim findings of the PROBS study

    АНТОЛОГИЯ ВЫДАЮЩИХСЯ ДОСТИЖЕНИЙ В НАУКЕ И ТЕХНИКЕ. ЧАСТЬ 42: ЭЛЕКТРОНИКА: РЕТРОСПЕКТИВА, УСПЕХИ И ПЕРСПЕКТИВЫ ЕЕ РАЗВИТИЯ

    Get PDF
    Purpose. Preparation of brief scientific and technical review about sources, retrospective view, basic stages, achievements, problems, trends and prospects of development of world electronics for period of 20th-21st centuries. Methodology. Known scientific methods of collection, analysis and analytical treatment of the opened scientific and technical information of world level in area of a vacuum electronics, semiconductor electronics, vacuum microelectronics and nanoelectronics, and also optical electronics. Results. A brief analytical scientific and technical review is resulted about the primary and present states, achievements, trends and prospects of development of electronics in the developed countries of the world. From positions of approach of the systems advantages and lacks of semiconductor microelectronics are described as compared to a vacuum electronics. Considerable progress is marked in development of semiconductor element base (microtransistors, microprocessors, microcontrollers and other) for creation of different electronic devices and computing engineering. Information, touching the determining deposit of electronic companies of the «Silicon Valley» in the USA in providing of technological breach in area of modern microelectronics, production of computers and their microprocessors, software and creation of devices of mobile communication development, is resulted. The basic problems of space microelectronics are affected. The possible ways of further development are indicated in the world of electronics, including vacuum microelectronics and nanoelectronics, and also optical electronics. The special attention is turned for urgent development of high-efficiency protective facilities specialists against cyber attacks hackers on the computer systems. In a review an accent is done on the sharp necessity of acceptance the proper services of drastic measures for a fight with cyber terrorism. Originality. Systematization of the scientific and technical materials touching world history of development and creation of modern element base of a vacuum electronics and semiconductor microelectronics known from the sources opened in outer informative space is executed. Possible new perspective directions of development in the modern world of microelectronics are formulated. Practical value. Popularization and deepening for students, engineer and technical| specialists and research workers of front-rank scientific and technical knowledge in the topical area of development, creation and application in the modern technique of the different setting of high-computer-integrated electronic devices, extending their scientific range of interests and further development of scientific and technical progress in society.Приведен научно-технический обзор о ретроспективе, успехах, тенденциях и перспективах развития мировой электроники. Рассмотрены основные этапы развития электроники, связанные с изобретением радиолампы, транзистора, интегральной схемы и высокоинтегрированного микропроцессора. Отмечен вклад электронных компаний «Кремниевой долины» США в технологический прорыв в микроэлектронике. Описано состояние работ в области вакуумной микроэлектроники и наноэлектроники

    Tactile sensors for robot handling

    Get PDF
    First and second generation robots have been used cost effectively in high‐volume ‘fixed’ or ‘hard’ automated manufacturing/assembly systems. They are ‘limited‐ability’ devices using simple logic elements or primitive sensory feedback. However, in the unstructured environment of most manufacturing plants it is often necessary to locate, identify, orientate and position randomly presented components. Visual systems have been researched and developed to provide a coarse resolution outline of objects. More detailed and precise definition of parts is usually obtained by high resolution tactile sensing arrays. This paper reviews and discusses the current state of the art in tactile sensing

    Design and implementation of flexible microprocessor control for retrofitting to first generation robotic devices

    Get PDF
    This Master of Science project concerns the design and development of a flexible microprocessor-based controller for a Versatran Industrial Robot. The software and hardware are designed in modules to enhance the flexibility of the controller so that it can be used as the control unit for other forms of workhandling equipment. The hardware of the designed controller is based on the Texas Instruments single board computer and interface printed circuit boards although some specially designed interface hardware was required. The software is developed in two major categories, which are "real-time" modules and "operator communication" modules. The real-time modules were for the control of the hydraulic servo-valves, pneumatic actuators and interlock switches, whilst the operator communication modules were used to assist the operator in programming "handling" sequences". The main advantages of the controller in its present form can be summarised thus:- (i) The down-time between program changes is significantly reduced; (ii) There can be many more positions programmed in a "handling sequence"; (iii)Greater control over axis dynamics can be achieved The software and hardware structure adopted has sufficient flexibility to allow many future enhancements to be provided. For example, as part of a subsequent research project additional facilities are being implemented as follows: a teach hand held pendant is being installed to improve still further the ease with which "handling sequences" can be programmed; improved control algorithms are being implemented and these will facilitate contouring; communication software is being included so that the controller can access via a node a commercially available local area network

    Transmitter Architectures Based on Near-Field Direct Antenna Modulation

    Get PDF
    A near-field direct antenna modulation (NFDAM) technique is introduced, where the radiated far-field signal is modulated by time-varying changes in the antenna near-field electromagnetic (EM) boundary conditions. This enables the transmitter to send data in a direction-dependent fashion producing a secure communication link. Near-field direct antenna modulation (NFDAM) can be performed by using either switches or varactors. Two fully-integrated proof-of-concept NFDAM transmitters operating at 60 GHz using switches and varactors are demonstrated in silicon proving the feasibility of this approach

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Implantable Piezoresistive Microcantilever-based Wireless Cocaine Biosensors

    Get PDF
    Cocaine is a well-known, illegal, recreational drug that is addictive due to its effects on the mesolimbic reward pathway in the human body. Accurate and real-time measurement of the concentration of cocaine in the body as a function of time and physiological factors is a key requirement for the understanding of the use of this drug. Current methods for such measurements involve taking samples from the human body (such as blood, urine, and hair) and performing analytical chemistry tests on these samples. This techniques are relatively expensive, time consuming, and labor intensive. To address this issue, a new implantable sensor for the automated detection and measurement of the relative cocaine concentration is presented here. The device is more economical and provides for higher sampling frequencies than the current methods. The active sensor elements consist of piezoresistive microcantilever arrays, which are coated with an oligonucleotide-based aptamer, i.e. a short sequence of RNA with high affinity for specific target molecules, as the cocaine receptor. A Wheatstone bridge is used to convert the biosensor signal into an electronic signal. This signal is transmitted wireless at an operating frequency of 403.55 MHz, which complies with the US Medical Implant Communication System (MICS) FCC 47CFR Part 95. The limit of detection for the in vitro experiment is found to be 1 ng/ml. The device has successfully measured the relative concentration of cocaine upon implantation in the subcutaneous interstitial fluid of male Wistar rats

    Research Naval Postgraduate School, v.13, no.1, February 2003

    Get PDF
    NPS Research is published by the Research and Sponsored Programs, Office of the Vice President and Dean of Research, in accordance with NAVSOP-35. Views and opinions expressed are not necessarily those of the Department of the Navy.Approved for public release; distribution is unlimited

    Review: Development and technical design of tangible user interfaces in wide-field areas of application

    Get PDF
    A tangible user interface or TUI connects physical objects and digital interfaces. It is more interactive and interesting for users than a classic graphic user interface. This article presents a descriptive overview of TUI's real-world applications sorted into ten main application areas-teaching of traditional subjects, medicine and psychology, programming, database development, music and arts, modeling of 3D objects, modeling in architecture, literature and storytelling, adjustable TUI solutions, and commercial TUI smart toys. The paper focuses on TUI's technical solutions and a description of technical constructions that influences the applicability of TUIs in the real world. Based on the review, the technical concept was divided into two main approaches: the sensory technical concept and technology based on a computer vision algorithm. The sensory technical concept is processed to use wireless technology, sensors, and feedback possibilities in TUI applications. The image processing approach is processed to a marker and markerless approach for object recognition, the use of cameras, and the use of computer vision platforms for TUI applications.Web of Science2113art. no. 425
    corecore