16,218 research outputs found

    Modelling Pricing Policy Based on Shelf-Life of Non Homogeneous Available-To-Promise in Fruit Supply Chains

    Full text link
    [EN] Fruit Supply Chains (SCs) are influenced by uncontrollable natural factors causing heterogeneity in their products, as regards certain attributes that are relevant to customers and vary over time because of the shelf-life. As a consequence customers should be served not only with the required quantity and due date as usual, but also with the quality, freshness and homogeneity specified in their orders. The order promising process (OPP) is based on the uncommitted availability of homogeneous product quantities in planned lots (ATP) that are uncertain. Therefore, there is a risk of not being reliable in the commitments because of discrepancies between the real and planned homogeneous quantities. Furthermore, due to the shelf-life (SL), serving customers with the freshest product introduce the risk of increasing waste because of the aging process. To efficiently manage these risks, this work proposes a mathematical model for handling the heterogeneous ATP in fruit SCs and a pricing policy based on the product SL in the moment of delivery. In order to illustrate the application of the modelling approach, a short numerical example is introduced. The example evidences a conflictive situation when optimizing the assignation of homogeneous ATP between serving orders with fresh and more valuable product, what could lead to increase the risk of having waste because of expiration, and consequently, more costs and less profit.This research has been supported by the Ministry of Science, Technology and Telecommunications, government of Costa Rica (MICITT), through the program of innovation and human capital for competitiveness (PINN) (PED-019-2015-1).Grillo-Espinoza, H.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2016). Modelling Pricing Policy Based on Shelf-Life of Non Homogeneous Available-To-Promise in Fruit Supply Chains. IFIP Advances in Information and Communication Technology. 480:608-617. https://doi.org/10.1007/978-3-319-45390-3_52S608617480Alarcon, F., Alemany, M.M.E., Lario, F.C., Oltra, R.F.: The lack of homogeneity in the product (LHP) in the ceramic tile industry and its impact on the reallocation of inventories. Boletin Soc. Espanola Ceram. Vidr. 50, 49–57 (2011). doi: 10.3989/cyv.072011Alemany, M.M.E., Grillo, H., Ortiz, A., Fuertes-Miquel, V.S.: A fuzzy model for shortage planning under uncertainty due to lack of homogeneity in planned production lots. Appl. Math. Model. (2015). doi: 10.1016/j.apm.2014.12.057Alemany, M.M.E., Lario, F.-C., Ortiz, A., Gomez, F.: Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: an illustration of a ceramic case. Appl. Math. Model. 37, 3380–3398 (2013). doi: 10.1016/j.apm.2012.07.022Blanco, A.M., Masini, G., Petracci, N., Bandoni, J.A.: Operations management of a packaging plant in the fruit industry. J. Food Eng. 70, 299–307 (2005). doi: 10.1016/j.jfoodeng.2004.05.075Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of mathematical models for supporting the order promising process under Lack of Homogeneity in Product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Kilic, O.A., van Donk, D.P., Wijngaard, J., Tarim, S.A.: Order acceptance in food processing systems with random raw material requirements. Spectrum 32, 905–925 (2010). doi: 10.1007/s00291-010-0213-4Lin, J.T., Hong, I.H., Wu, C.H., Wang, K.S.: A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains. Comput. Ind. Eng. 59, 720–729 (2010). doi: 10.1016/j.cie.2010.07.026Maihami, R., Karimi, B.: Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts. Comput. Oper. Res. 51, 302–312 (2014). doi: 10.1016/j.cor.2014.05.022Mundi, M.I., Alemany, M.M.E., Poler, R., Fuertes-Miquel, V.S.: Fuzzy sets to model master production effectively in Make to Stock companies with Lack of Homogeneity in the Product. Fuzzy Sets Syst. 293, 95–112 (2016). http://dx.doi.org/10.1016/j.fss.2015.06.009Tsao, Y.-C., Sheen, G.-J.: Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments. Part Spec. Issue Top. Real-Time Supply Chain Manag. 35, 3562–3580 (2008). doi: 10.1016/j.cor.2007.01.02

    Simulation to reallocate supply to committed orders under shortage

    Full text link
    [EN] This article aims to deal with the reallocating supply problem in both its real and planned contexts, to orders that result from the order promising process under shortage. To this end, we propose a system dynamics-based simulation model to facilitate modelling for order managers, and to provide a graphic support tool to understand the process and to make decisions. The basis of the simulation model's structure is a mixed-integer linear programming approach that intends to maximise profits by considering the possibility of making partial and delayed deliveries. To illustrate this, we consider a real-world problem from the ceramic sector that contemplates 35 orders. We obtained a solution by a mathematical programming model and a simulation model. The results show the simulation model's capacity to obtain near-optimum results, and to provide a simulated history of the system."This is an Author's Accepted Manuscript of an article published in Esteso, Ana, Josefa Mula, Francisco Campuzano-Bolarín, MME Alemany Diaz, and Angel Ortiz. 2018. Simulation to Reallocate Supply to Committed Orders under Shortage. International Journal of Production Research 57 (5). Informa UK Limited: 1552 70. doi:10.1080/00207543.2018.1493239, available online at: https://www.tandfonline.com/doi/full/10.1080/00207543.2018.1493239"Esteso, A.; Mula, J.; Campuzano-Bolarín, F.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2019). Simulation to reallocate supply to committed orders under shortage. International Journal of Production Research. 57(5):1552-1570. https://doi.org/10.1080/00207543.2018.1493239S15521570575Alarcón, F., Alemany, M. M. E., Lario, F. C., & Oltra, R. F. (2011). La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(1), 49-58. doi:10.3989/cyv.072011Alemany, M. M. E., Alarcón, F., Oltra, R. F., & Lario, F. C. (2013). Reasignación óptima del inventario a pedidos en empresas cerámicas caracterizadas por la falta de homogeneidad en el producto (FHP). Boletín de la Sociedad Española de Cerámica y Vidrio, 52(1), 31-41. doi:10.3989/cyv.42013Alemany, M. M. E., Grillo, H., Ortiz, A., & Fuertes-Miquel, V. S. (2015). A fuzzy model for shortage planning under uncertainty due to lack of homogeneity in planned production lots. Applied Mathematical Modelling, 39(15), 4463-4481. doi:10.1016/j.apm.2014.12.057Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022ALEMANY, M. M. E., A., A., BOZA, A., & FUERTES-MIQUEL, V. S. (2015). A MODEL-DRIVEN DECISION SUPPORT SYSTEM FOR REALLOCATION OF SUPPLY TO ORDERS UNDER UNCERTAINTY IN CERAMIC COMPANIES. Technological and Economic Development of Economy, 21(4), 596-625. doi:10.3846/20294913.2015.1055613Boza, A., Alemany, M. M. E., Alarcón, F., & Cuenca, L. (2013). A model-driven DSS architecture for delivery management in collaborative supply chains with lack of homogeneity in products. Production Planning & Control, 25(8), 650-661. doi:10.1080/09537287.2013.798085Campuzano-Bolarín, F., Mula, J., & Peidro, D. (2013). An extension to fuzzy estimations and system dynamics for improving supply chains. International Journal of Production Research, 51(10), 3156-3166. doi:10.1080/00207543.2012.760854Framinan, J. M., & Leisten, R. (2009). Available-to-promise (ATP) systems: a classification and framework for analysis. International Journal of Production Research, 48(11), 3079-3103. doi:10.1080/00207540902810544Georgiadis, P., & Michaloudis, C. (2012). Real-time production planning and control system for job-shop manufacturing: A system dynamics analysis. European Journal of Operational Research, 216(1), 94-104. doi:10.1016/j.ejor.2011.07.022Georgiadis, P., & Politou, A. (2013). Dynamic Drum-Buffer-Rope approach for production planning and control in capacitated flow-shop manufacturing systems. Computers & Industrial Engineering, 65(4), 689-703. doi:10.1016/j.cie.2013.04.013Grillo, H., Alemany, M. M. E., & Ortiz, A. (2016). A review of mathematical models for supporting the order promising process under Lack of Homogeneity in Product and other sources of uncertainty. Computers & Industrial Engineering, 91, 239-261. doi:10.1016/j.cie.2015.11.013Grillo, H., Alemany, M. M. E., Ortiz, A., & Mula, J. (2017). A Fuzzy Order Promising Model With Non-Uniform Finished Goods. International Journal of Fuzzy Systems, 20(1), 187-208. doi:10.1007/s40815-017-0317-yJeon, S. M., & Kim, G. (2016). A survey of simulation modeling techniques in production planning and control (PPC). Production Planning & Control, 27(5), 360-377. doi:10.1080/09537287.2015.1128010Mula, J., Campuzano-Bolarin, F., Díaz-Madroñero, M., & Carpio, K. M. (2013). A system dynamics model for the supply chain procurement transport problem: comparing spreadsheets, fuzzy programming and simulation approaches. International Journal of Production Research, 51(13), 4087-4104. doi:10.1080/00207543.2013.774487Olhager, J. (2003). Strategic positioning of the order penetration point. International Journal of Production Economics, 85(3), 319-329. doi:10.1016/s0925-5273(03)00119-1Tako, A. A., & Robinson, S. (2012). The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decision Support Systems, 52(4), 802-815. doi:10.1016/j.dss.2011.11.01

    A conceptual framework for crop-based agri-food supply chain characterization under uncertainty

    Get PDF
    [EN] Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015Alemany Díaz, MDM.; Esteso, A.; Ortiz Bas, Á.; Hernández Hormazabal, JE.; Fernández, A.; Garrido, A.; Martin, J.... (2021). A conceptual framework for crop-based agri-food supply chain characterization under uncertainty. Studies in Systems, Decision and Control. 280:19-33. https://doi.org/10.1007/978-3-030-51047-3_2S1933280Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manage. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manage. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Iakovou, E., Vlachos, D., Achillas, C., Anastasiadis, F.: A methodological framework for the design of green supply chains for the agrifood sector. Paper presented at the 2nd international conference on supply chains, Katerini, 5–7 Oct 2012Manzini, R., Accorsi, R.: The new conceptual framework for food supply chain assessment. J. Food Eng. 115, 251–263 (2013)Shukla, M., Jharkharia, S.: Agri-fresh produce supply chain management: a state-of-the-art literature review. Int. J. Oper. Prod. Manage. 33, 114–158 (2013)Lemma, Y., Kitaw, D., Gatew, G.: Loss in perishable food supply chain: an optimization approach literature review. Int. J. Sci. Eng. Res. 5, 302–311 (2014)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)Van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial Supply Chain Management: Concepts and Applications. FAO (2007)Hernandez, J., Mortimer, M., Patelli, E., Liu, S., Drummond, C., Kehr, E., Calabrese, N., Iannacone, R., Kacprzyk, J., Alemany, M.M.E., Gardner, D.: RUC-APS: enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: 11th International Conference on Industrial Engineering and Industrial Management, Valencia, Spain (2017)Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, Thousand Oaks (1994)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62, 519–540 (2011)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Zhang, W., Wilhelm, W.E.: OR/MS decision support models for the specialty crops industry: a literature review. Ann. Oper. Res. 190, 131–148 (2011)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of mathematical models for supporting the order promising process under lack of homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Blanco, A.M., Masini, G., Petracci, N., Bandoni, J.A.: Operations management of a packaging plant in the fruit industry. J. Food Eng. 70, 299–307 (2005)Grillo, H., Alemany, M.M.E., Ortiz, A., Fuertes-Miquel, V.S.: Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Appl. Math. Model. 49, 255–278 (2017)Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Wolferta, J.: Process modelling in demand-driven supply chains: a reference model for the fruit industry. Comput. Electron. Agric. 73, 174–187 (2010)Amorim, P., Günther, H., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Nahmias, S.: Perishable inventory theory: a review. Oper. Res. 30, 680–708 (1982)Mowat, A., Collins, R.: Consumer behavior and fruit quality: supply chain management in an emerging industry. Supply Chain Manage. 5, 45–54 (2000)Kazaz, B., Webster, S.: The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. M&SOM Manuf. Serv. Oper. Manage. 13, 404–417 (2011)Van der Vorst, J.G.: Effective food supply chains: generating, modelling and evaluating supply chain scenarios (2000)Fuertes-Miquel, V.S., Cuenca, L., Boza, A., Guyon, C., Alemany, M.M.E.: Conceptual framework for the characterization of vegetable breton supply chain sustainability in an uncertain context. In: 12th International Conference on Industrial Engineering and Industrial Management, XXII Congreso de Ingeniería de Organización, Girona, Spain, 12–13 July 2018Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012)Hoekstra, S., Romme, J.: Integral Logistic Structures: Developing Customer-Oriented Goods Flow. Industrial Press Inc., New York (1992)Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)Handayati, Y., Simatupang, T.M., Perdana, T.: Agri-food supply chain coordination: the state-of-the-art and recent developments. Logist. Res. 8, 1–15 (2015)Mintzberg, H.: The Structuring of Organisations. Prentice-Hall, Upper Saddle River (1979)Keuning, D.: Grondslagen Van Het Management. Stenfert Kroese, Houten (1995) (in Dutch)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int. J. Prod. Res. (2018)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agr. Sci. 45, 307–328 (1997)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for managing uncertainty in a collaborative agri-food supply chain context. In: IFIP Advances in Information and Communication Technology, vol. 506, pp. 715–724 (2017)Mundi, I., Alemany, M.M.E., Poler, R., Fuertes-Miquel, V.S.: Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. Int. J. Prod. Res. (2019)Grillo, H., Alemany, M.M.E., Ortiz, A., De Baets, B.: Possibilistic compositions and state functions: application to the order promising process for perishables. Int. J. Prod. Res. (2019)Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C., Pla-Aragones, L.M.: Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 345–355 (2016)Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45, 92–118 (2014)Banasik, A., Bloemhof-Ruwaard, J.M., Kanellopoulos, A., Claassen, G.D.H., van der Vorst, J.G.: Multi-criteria decision making approaches for green supply chains: a review. Flex. Serv. Manuf. J. 1–31 (2016)Paam, P., Berretta, R., Heydar, M., Middleton, R.H., García-Flores, R., Juliano, P.: Planning models to optimize the agri-fresh food supply chain for loss minimization: a review. In: Reference Module in Food Science (2016)Soysal, M., Bloemhof-Ruwaard, J.M., Meuwissen, M.P., van der Vorst, J.G.: A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 3, 136–155 (2012

    Advanced methods and models in uncertainty for the order promising process in supply chain characterized by the lack of homogeneity in product

    Full text link
    Tesis por compendioThe Lack of Homogeneity in the Product (LHP) appears in productive processes with raw materials, which directly stem from nature and/or production processes with operations that confer heterogeneity to the characteristics of the outputs obtained, even when the inputs used are homogeneous. LHP appears in different sectors such as ceramic tile, horticulture, marble, snacks, among others. LHP becomes a managerial problem when customers require to be served with homogeneous product. Supply chains responsible to provide homogeneous product face the need to include classification activities in their productive processes to obtain sub-lots of homogeneous product. Due to the inherent LHP uncertainty, these homogeneous sub-lots will not be known until the product have been produced and classified. An improper management of the LHP can have a very negative impact on the customers' satisfaction due to inconsistencies in the answer to their requirements and also on the Supply Chain's efficiency. The Order Promising Process (OPP) appears as a key element for properly managing the LHP in order to ensure the matching of uncertain homogeneous supply with customer order proposals. The OPP refers to the set of business activities that are triggered to provide a response to the orders from customers. These activities are related to the acceptance/rejection decision, and to set delivery dates. For supply chains affected by the LHP, the OPP must consider the homogeneity as another requirement in the answer to the orders. Besides, due to the LHP inherent uncertainty, discrepancies between the real and planned homogeneous quantities might provoke that previously committed orders cannot be served. The Shortage Planning (SP) process intends to find alternatives in order to minimise the negative impact on customers and the supply chain. Considering LHP in the OPP brings a set of new challenging features to be addressed. The conventional approach of assuming homogeneity in the product for the master production schedule (MPS) and the quantities Available-To-Promise (ATP) derived from it is no longer adequate. Instead, both the MPS and ATP should be handled in terms of homogeneous sub-lots. Since the exact quantity of homogeneous product from the planned lots in the MPS is not exactly known until the classification activities have been performed, the ATP also inherits this uncertainty, bringing a new level of complexity. Non-homogeneous product cannot be accumulated in order to fulfil future incoming orders. Even more, if the product handled is perishable, the homogeneity management becomes considerably more complex. This is because the state of the product is dynamic with time and related variables to it, like quality, price, etc., could change with time. This situation could bring unexpected wasting costs apart from the shortages already mentioned. The perishability factor is itself another source of uncertainty associated to the LHP. This dissertation proposes a conceptual framework and different mathematical programming models and tools, in both deterministic and uncertainty environments, in order to support the OPP and SP under LHP's effect. The aim is to provide a reliable commitment with customer orders looking for a high service level not just in the due date and quantity but also in the homogeneity requirements. The modelling of the characteristics inherent to LHP under deterministic context constitutes itself one of the main contribution of this dissertation. Another novelty consists in the inclusion of uncertainty in the definition of homogeneous sub-lots, their quantities and their dynamic state and value. The uncertainty modelling approach proposed is mainly based on the application of fuzzy set theory and possibility theory. The proposed mathematical models and tools have been validated in real cases of SC, specifically in the ceramic tile sector for non perishables, and in the fruit sector for perishables. The results show a ...La Falta de Homogeneidad en el Producto (LHP, por sus siglas del inglés ``Lack of Homogeneity in the Product'') aparece en procesos productivos con materias primas que derivan directamente de la naturaleza y/o procesos de producción con operaciones que confieren heterogeneidad a las características de los productos obtenidos, incluso cuando los insumos utilizados son homogéneos. La LHP aparece en diferentes sectores como la cerámica, horticultura, mármol, snacks, entre otros. Se convierte en un problema gerencial cuando los clientes requieren homogeneidad en el producto y las cadenas de suministro enfrentan la necesidad de incluir actividades de clasificación en sus procesos productivos para obtener sub-lotes de producto homogéneo. Debido a la incertidumbre inherente a la LHP, los sub-lotes homogéneos y su cantidad no serán conocidos hasta que el producto haya sido producido y clasificado. Una gestión inadecuada de la LHP puede tener un impacto muy negativo en la satisfacción de los clientes debido a inconsistencias en la respuesta a sus requerimientos y también en la eficacia de la Cadena de Suministro. El Proceso de Comprometer de Pedido (OPP, por sus siglas del inglés ``Order Promising Process'') aparece como un elemento clave para gestionar adecuadamente la LHP, con el fin de asegurar la coincidencia entre el suministro incierto de producto homogéneo y las propuestas de pedido del cliente. El OPP se refiere al conjunto de actividades empresariales realizadas para proporcionar una respuesta a las órdenes de los clientes. Estas actividades están relacionadas con las decisiones de aceptación/rechazo, y establecimiento de fechas de entrega para las órdenes del cliente. En las cadenas de suministro afectadas por la LHP, el OPP debe considerar la homogeneidad como otro requisito adicional en la respuesta a los pedidos. Además, debido a la incertidumbre intrínseca de la LHP, las discrepancias entre las cantidades homogéneas reales y planificadas podrían provocar que las órdenes comprometidas anteriormente no puedan ser completadas debido a la escasez de producto. El proceso de planificación de la escasez (SP, por sus siglas del inglés "Shortage Planning") se encarga de encontrar alternativas para minimizar este impacto negativo en los clientes y la cadena de suministro. Considerar la LHP dentro del OPP implica un conjunto nuevo de características desafiantes que deben ser abordadas. El enfoque convencional de asumir la homogeneidad en el producto para el programa maestro de producción (MPS, por sus siglas del inglés "Master Production Schedule") y las cantidades disponibles a comprometer (ATP, por sus siglas del inglés "Available-To-Promise") derivadas de él, no es adecuado. En cambio, tanto el MPS como el ATP deben manejarse en términos de sub-lotes homogéneos. Dado que la cantidad exacta de producto homogéneo de los lotes previstos en el MPS no se sabe exactamente hasta que se han realizado las actividades de clasificación, el ATP también hereda esta incertidumbre, trayendo un nuevo nivel de complejidad. El producto no homogéneo no se puede acumular para satisfacer futuras órdenes entrantes. Más aún, si el producto manipulado es perecedero, el manejo de la homogeneidad se vuelve mucho más complejo. Esto se debe a que el estado del producto es dinámico en el tiempo, y variables relacionadas como calidad, precio, etc., podrían también cambiar con el tiempo. Esta situación puede provocar costos inesperados de desperdicio aparte de la escasez ya mencionada. El factor de perecedero es en sí mismo otra fuente de incertidumbre asociada a la LHP. Esta disertación propone un marco conceptual y diferentes modelos y herramientas de programación matemática, tanto en entornos deterministas como de incertidumbre, para apoyar al OPP y SP considerando el efecto de LHP. El objetivo es proporcionar un compromiso fiable con los pedidos de los clientes en busca de un alto nivel de servicio no sLa Falta d'Homogeneïtat en el Producte (LHP, per les seues sigles de l'anglés ''Lack of Homogeneity in the Product'') apareix en processos productius amb matèries primes que deriven directament de la natura i/o processos de producció amb operacions que conferixen heterogeneïtat a les característiques dels productes obtinguts, fins i tot quan les entrades utilitzades són homogènies . La LHP apareix en diferents sectors com la ceràmica, horticultura, marbre, snacks, entre altres. Es convertix en un problema gerencial quan els clients requereixen homogeneïtat en el producte i les cadenes de subministrament enfronten la necessitat d'incloure activitats de classificació en els seus processos productius per a obtindre sublots de producte homogeni. A causa de la incertesa inherent a la LHP, els sublots homogenis i la seua quantitat no seran coneguts fins que el producte haja sigut produït i classificat. Una gestió inadequada de la LHP pot tindre un impacte molt negatiu en la satisfacció dels clients degut a inconsistències en la resposta als seus requeriments i també en l'eficàcia de la Cadena de Subministrament. El Procés de Comprometre Comandes (OPP, per les seues sigles de l'anglés ''Order Promising Process'') apareix com un element clau per a gestionar adequadament la LHP, a fi d'assegurar la coincidència entre el subministrament incert de producte homogeni i les propostes de comanda del client. L'OPP es refereix al conjunt d'activitats empresarials realitzades per a proporcionar una resposta a les ordres dels clients. Aquestes activitats estan relacionades amb les decisions d'acceptació/rebuig, i establiment de dates de lliurament per a les ordres del client. En les cadenes de subministrament afectades per la LHP, l'OPP ha de considerar l'homogeneïtat com un altre requisit addicional en la resposta a les comandes. A més, a causa de la incertesa intrínseca de la LHP, les discrepàncies entre les quantitats homogènies reals i planificades podrien provocar que les ordres compromeses anteriorment no puguen ser completades a causa de l'escassetat de producte. El procés de planificació de l'escassetat (SP, per les seues sigles de l'anglés "Shortage Planning") s'encarrega de trobar alternatives per a minimitzar aquest impacte negatiu en els clients i en la cadena de subministrament. Considerar la LHP dins de l'OPP implica un conjunt nou de característiques desafiants que han de ser abordades. L'enfocament convencional d'assumir l'homogeneïtat en el producte per al programa mestre de producció (MPS, per les seues sigles de l'anglés "Master Production Schedule") i les quantitats disponibles a comprometre (ATP, per les seues sigles de l'anglés "Available-To-Promise") derivades d'ell, no és adequat. En canvi, tant el MPS com l'ATP han de manejar-se en termes de sublots homogenis. Atés que la quantitat exacta de producte homogeni dels lots previstos en el MPS no se sap exactament fins que s'han realitzat les activitats de classificació, l'ATP també hereta aquesta incertesa, portant un nou nivell de complexitat. El producte no homogeni no es pot acumular per a satisfer futures ordees entrants. Més encara, si el producte manipulat és perible, el maneig de l'homogeneïtat es torna molt més complex. Açò es deu al fet que l'estat del producte és dinàmic en el temps, i variables relacionades com qualitat, preu, etc., podrien també canviar amb el temps. Aquesta situació pot provocar costos inesperats de rebuig a banda de l'escassetat ja esmentada. El factor de perible és en si mateix un altra font d'incertesa associada a la LHP. Aquesta dissertació proposa un marc conceptual i diferents models i eines de programació matemàtica, tant en entorns deterministes com d'incertesa, per a recolzar a l'OPP i SP considerant l'efecte de LHP. L'objectiu és proporcionar un compromís fiable amb les comandes dels clients a la recerca d'un alt nivell de servei no sols en la data i la quantitat esperades, sGrillo Espinoza, H. (2017). Advanced methods and models in uncertainty for the order promising process in supply chain characterized by the lack of homogeneity in product [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/91110TESISCompendi

    Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias

    Full text link
    [EN] The market for agricultural products has grown substantially. At the same time, social concern in food issues such as food safety, food quality, traceability and sustainability is constantly increasing. These reasons have pointed out the need of new models and tools to manage the agri-food supply chains while considering the characteristics that differentiate them from other industrial supply chains as well as the uncertainties present in the sector. Thus, the aim of this paper is to present the current status of a project which mains objectives are to describe the complexity faced by agri-food supply chain decision makers, and to develop new tools based on mathematical programming models to help the decision making process in agri-food supply chain planning. These models novelty will include the consideration of the inherent characteristics of agri-food supply chains and the sources of uncertainty present in the sector. The proposed models and tools will be applied to a real agri-food supply chain in order to prove their validity and applicability and to compare the results obtained by deterministic and uncertain tools.[ES] El mercado de productos agrícolas está en continuo crecimiento, al igual que la preocupación social en temas alimentarios como la calidad y seguridad alimentaria. Esto genera la necesidad de desarrollar modelos y herramientas para gestionar las cadenas de suministro agroalimentarias de manera ajustada y teniendo en cuenta sus características y fuentes de incertidumbre inherentes. Este articulo presenta el estado actual de un proyecto cuyos principales objetivos son: describir la complejidad enfrentada por los decisores de las cadenas de suministro agroalimentarias, y desarrollar nuevas herramientas basadas en programación matemática para apoyar la toma de decisiones en este sector.This research has been supported by the Program of Formation of University Professors (FPU) of the Spanish Ministry of Education, Culture and Sport (FPU15/03595)Esteso, A.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2017). Deterministic and Uncertain Methods and Models for Managing Agri-Food Supply Chain. Dirección y organización (Online). (62):41-46. http://hdl.handle.net/10251/108673S41466

    A multi-objective model for inventory and planned production reassignment to committed orders with homogeneity requirements

    Full text link
    [EN] Certain industries are characterized by obtaining non-homogeneous units of the same product. However, customers require homogeneity in some attributes between units of the same and different products requesting in their orders. To commit such orders, an estimation of the homogeneous product to be obtained can be used. Unfortunately, estimations of homogenous product quantities can differ considerably from real distributions. This fact could entail the impossibility of accomplishing the delivery of customer orders in the terms previously committed. To solve this, we propose a multi-objective mathematical programming model to reallocate already available homogeneous products in stock and planned production to committed orders. The main contributions of this model are the consideration of the homogeneity requirement between units of different lines of the same order, the allowance of partial deliveries of order lines, and the specification of some relevant attributes of products to accomplish with the customer homogeneity requirement. Different hypotheses are proved through experiments and statistical analyses applied to a ceramic tile company. The epsilon-constraint method is used to obtain an implementable solution for the company. The weighted sum method is used when proving other hypotheses that offer some managerial insights to companies.This work was supported by the Program of Formation of University Professors (FPU) of the Spanish Ministry of Education, Culture and Sport (FPU15/03595), and by the Spanish Ministry of Economy and Competitiveness Project DPI2011-23597.Esteso, A.; Alemany Díaz, MDM.; Ortiz Bas, Á.; Peidro Payá, D. (2018). A multi-objective model for inventory and planned production reassignment to committed orders with homogeneity requirements. Computers & Industrial Engineering. 124:180-194. https://doi.org/10.1016/j.cie.2018.07.025S18019412

    Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context

    Full text link
    [EN] Agri-food supply chains are subjected to many sources of uncertainty. If these uncertainties are not managed properly, they can have a negative impact on the agri-food supply chain (AFSC) performance, its customers, and the environment. In this sense, collaboration is proposed as a possible solution to reduce it. For that, a conceptual framework (CF) for managing uncertainty in a collaborative context is proposed. In this context, this paper seeks to answer the following research questions: What are the existing uncertainty sources in the AFSCs? Can collaboration be used to reduce the uncertainty of AFSCs? Which elements can integrate a CF for managing uncertainty in a collaborative AFSC? The CF proposal is applied to the weather source of uncertainty in order to show its applicability.The first author acknowledges the partial support of the Program of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport (FPU15/03595). The other authors acknowledge the partial support of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems, funded by the EU under its funding scheme H2020-MSCA-RISE-2015.Esteso-Álvarez, A.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2017). Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context. IFIP Advances in Information and Communication Technology. 506:715-724. https://doi.org/10.1007/978-3-319-65151-4_64S715724506Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manag. Int. J. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manag. Int. J. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial supply chain management: Concepts and applications. FAO (2007)Borodin, V., Bourtembourg, J., Hnaien, F., Kabadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)van der Vorst, J.G.A.J., Beulens, A.J.M.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logist. Manag. 32, 409–430 (2000)Klosa, E.: A concept of models for supply chain speculative risk analysis and management. J. Econ. Manag. 12, 45–59 (2013)Samson, S., Reneke, J.A., Wiecek, M.M.: A review of different perspectices on uncertainty and risk and an alternative modeling paradigm. Reliab. Eng. Syst. Saf. 94, 558–567 (2009)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agric. Sci. 45, 307–328 (1997)van der Vorst, J.G.: Effective food supply chains; Generating, modelling and evaluating supply chain scenarios. (2000)Amorim, P., Günther, H.O., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B.: Managing perishability in production-distribution planning: a discussion and review. Flex. Serv. Manuf. 25, 389–413 (2013)Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarria, D., Menesatti, P.: A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol. 6, 353–366 (2013)Pahl, J., Voss, S.: Integrating deterioration and lifetime constraints in production and supply chain planning: a survey. Eur. J. Oper. Res. 238, 654–674 (2014)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of Mathematical models for supporting the order promising process under Lack of Homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Zwietering, M.H., van’t Riet, K.: Modelling of the quality of food: optimization of a cooling chain. In: Management Studies and the Agri-business: Management of Agri-chains, Wageningen, The Netherlands, pp. 108–117 (1994)Akkerman, R., Farahani, P., Grunow, M.: Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. Spectrum 32, 863–904 (2010)Apaiah, R.K., Hendrix, E.M.T., Meerdink, G., Linnemann, A.R.: Qualitative methodology for efficient food chain design. Trends Food Sci. Technol. 16, 204–214 (2005)Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: State-of-the-art in literature and research. Comput. Electron. Agric. 89, 158–174 (2012)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Dreyer, H.C., Strandhagen, J.O., Hvolby, H.H., Romsdal, A., Alfnes, E.: Supply chain strategies for speciality foods: a Norwegian case study. Prod. Plan. Control 27, 878–893 (2016)Baghalian, A., Rezapour, S., Farahani, R.Z.: Robust supply chain network design with service level against disruptions and demand uncertainties: a real-life case. Eur. J. Oper. Res. 227, 199–215 (2013)Aggarwal, S., Srivastava, M.K.: Towards a grounded view of collaboration in Indian agri-food supply chains: a qualitative investigation. Br. Food J. 115, 1085–1106 (2016)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Opara, L.U.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1, 101–106 (2003)Kruize, J.W., Wolfert, S., Goense, D., Scholten, H., Beulens, A., Veenstra, T.: Integrating ICT applications for farm business collaboration processes using Fl Space. In: 2014 Annual SRII Global Conference, pp. 232–240. IEEE (2014)Oriade, C.A., Dillon, C.R.: Developments in biophysical and bioeconomic simulation of agricultural systems: a review. Agric. Econ. 17, 45–58 (1997)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: value creation in a knowledge society. In: Wang, Kesheng, Kovacs, G.L., Wozny, Michael, Fang, Minglun (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 26–40. Springer, Boston, MA (2006). doi: 10.1007/0-387-34403-9_4Prima Dania, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. MATEC Web Conf. 58 (2016)Simatupang, T.M., Sridharan, R.: The collaborative index: a measure for supply chain collaboration. Int. J. Phys. Distrib. Logist. Manag. 35, 44–62 (2005)Fischer, C., Hartmann, M., Reynolds, N., Leat, P., Revoredo-Giha, C., Henchion, M., Albisu, L.M., Gracia, A.: Factors influencing contractual choice and sustainable relationships in European agri-food supply chains. Eur. Rev. Agric. Econ. 36, 541–569 (2009

    Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models

    Full text link
    This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the International Journal of Production Research (2018) © Taylor & Francis, available online at: http://doi.org/10.1080/00207543.2018.1447706[EN] Agri-food sector performance strongly impacts global economy, which means that developing optimisation models to support the decision-making process in agri-food supply chains (AFSC) is necessary. These models should contemplate AFSC¿s inherent characteristics and sources of uncertainty to provide applicable and accurate solutions. To the best of our knowledge, there are no conceptual frameworks available to design AFSC through mathematical programming modelling while considering their inherent characteristics and sources of uncertainty, nor any there literature reviews that address such characteristics and uncertainty sources in existing AFSC design models. This paper aims to fill these gaps in the literature by proposing such a conceptual framework and state of the art. The framework can be used as a guide tool for both developing and analysing models based on mathematical programming to design AFSC. The implementation of the framework into the state of the art validates its. Finally, some literature gaps and future research lines were identified.This first author was partially supported by the Programme of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport [grant number FPU15/03595]; the partial support of Project 'Development of an integrated maturity model for agility, resilience and gender perspective in supply chains (MoMARGE). Application to the agricultural sector.' Ref. GV/2017/025, funded by the Generalitat Valenciana. The other authors acknowledge the partial support of Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems, funded by the EU under its funding scheme H2020-MSCA-RISE-2015.Esteso, A.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research. 56(13):4418-4446. https://doi.org/10.1080/00207543.2018.1447706S44184446561

    A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company

    Full text link
    [EN] Order promising in manufacturing systems that produce non-uniform units of the same finished good becomes a more complex process when customer orders need to be served with homogeneous units. To facilitate this task, we propose a mathematical model-based decision tool to support the order promising process according to product homogeneity requirements in hybrid Make-To-Stock (MTS) and Make-To-Order (MTO) contexts. In these manufacturing environments, the comparison of Available-To-Promise (ATP) and/or Capable-To-Promise (CTP) quantities with homogeneous ones ordered by customers is necessary during the order commitment. To properly deal with customers' product uniformity requirements, different ATP consumption rules are implemented by defining a novel objective function. CTP modelling in these systems also entails having to address new aspects, such as estimating future homogeneous quantities in additional lots to the master plan, accomplishing minimum lot sizes and saving in setups when programming new lots. By including CTP in the order promising model, a closer integration with the master production schedule is achieved. The resulting mathematical model was applied to a ceramic tile company in different supply scenarios and execution modes, and at several availability levels (ATP and ATP&CTP). The results validate model performance and provide insights into the impact of ATP consumption rules on the profits made from committed customer orders in different scenarios for the specific ceramic tile company.This work was supported by the Spanish Ministry of Economy and Competitiveness with Grant DPI2011-23597 and the Universitat Polito cnica de Valencia with Grant Ref. PAID-06-11/1840.Alemany Díaz, MDM.; Ortiz Bas, Á.; Fuertes-Miquel, VS. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering. 122:219-234. https://doi.org/10.1016/j.cie.2018.05.040S21923412

    Methodology and model-based DSS to managing the reallocation of inventory to orders in LHP situations. Application to the ceramics sector

    Full text link
    [EN] Lack of homogeneity in the product (LHP) is a problem when customers require homogeneous units of a single product. In such cases, the optimal allocation of inventory to orders becomes much more complex. Furthermore, in an MTS environment, an optimal initial allocation may become less than ideal over time, due to different circumstances. This problem occurs in the ceramics sector, where the final product varies in tone and calibre. This paper proposes a methodology for the reallocation of inventory to orders in LHP situation (MERIO-LHP) and a model-based decision-support system (DSS) to support the methodology, which enables an optimal reallocation of inventory to order lines to be carried out in real businesses environments in which LHP is inherent. The proposed methodology and model-based DSS were validated by applying it to a real case at a ceramics company. The analysis of the results indicates that considerable improvements can be obtained with regard to the quantity of orders fulfilled and sales turnover.Oltra Badenes, RF.; Gil Gómez, H.; Merigó, JM.; Palacios Marqués, D. (2019). Methodology and model-based DSS to managing the reallocation of inventory to orders in LHP situations. Application to the ceramics sector. PLoS ONE. 14(7):1-19. https://doi.org/10.1371/journal.pone.0219433S119147Alarcón, F., Alemany, M. M. E., Lario, F. C., & Oltra, R. F. (2011). La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(1), 49-58. doi:10.3989/cyv.072011Wanke, P., Alvarenga, H., Correa, H., Hadi-Vencheh, A., & Azad, M. A. K. (2017). Fuzzy inference systems and inventory allocation decisions: Exploring the impact of priority rules on total costs and service levels. Expert Systems with Applications, 85, 182-193. doi:10.1016/j.eswa.2017.05.043JÖNSSON, H., & SILVER, E. A. (1987). Stock allocation among a central warehouse and identical regional warehouses in a particular push inventory control system. International Journal of Production Research, 25(2), 191-205. doi:10.1080/00207548708919833Wu, H. H., & Yeh, C. S. (2014). A Study of the Bin Inventory Allocation Model for LED-CM Plants. Applied Mechanics and Materials, 543-547, 4440-4443. doi:10.4028/www.scientific.net/amm.543-547.4440Wu, H.-H., & Jiang, X.-Y. (2017). Improved genetic algorithms for optimization of inventory allocation in LED chip manufacturing plants. Journal of Interdisciplinary Mathematics, 20(3), 727-738. doi:10.1080/09720502.2017.1357328Kristianto, Y., Gunasekaran, A., Helo, P., & Hao, Y. (2014). A model of resilient supply chain network design: A two-stage programming with fuzzy shortest path. Expert Systems with Applications, 41(1), 39-49. doi:10.1016/j.eswa.2013.07.009Protopappa-Sieke, M., Sieke, M. A., & Thonemann, U. W. (2016). Optimal two-period inventory allocation under multiple service level contracts. European Journal of Operational Research, 252(1), 145-155. doi:10.1016/j.ejor.2016.01.013Luo, K., Bollapragada, R., & Kerbache, L. (2017). Inventory allocation models for a two-stage, two-product, capacitated supplier and retailer problem with random demand. International Journal of Production Economics, 187, 168-181. doi:10.1016/j.ijpe.2016.12.014Zhao, H., Huang, E., Dou, R., & Wu, K. (2019). A multi-objective production planning problem with the consideration of time and cost in clinical trials. Expert Systems with Applications, 124, 25-38. doi:10.1016/j.eswa.2019.01.038Kang, K., Pu, W., Ma, Y., & Wang, X. (2018). Bi-objective inventory allocation planning problem with supplier selection and carbon trading under uncertainty. PLOS ONE, 13(11), e0206282. doi:10.1371/journal.pone.0206282Esmaeili-Najafabadi, E., Fallah Nezhad, M. S., Pourmohammadi, H., Honarvar, M., & Vahdatzad, M. A. (2019). A joint supplier selection and order allocation model with disruption risks in centralized supply chain. Computers & Industrial Engineering, 127, 734-748. doi:10.1016/j.cie.2018.11.017Chen, C.-M. J., & Thomas, D. J. (2017). Inventory Allocation in the Presence of Service-Level Agreements. Production and Operations Management, 27(3), 553-577. doi:10.1111/poms.12814Chen, C.-Y., Zhao, Z.-Y., & Ball, M. O. (2001). Information Systems Frontiers, 3(4), 477-488. doi:10.1023/a:1012837207691CHEN, C.-Y., ZHAO, Z., & BALL, M. O. (2009). A MODEL FOR BATCH ADVANCED AVAILABLE-TO-PROMISE. Production and Operations Management, 11(4), 424-440. doi:10.1111/j.1937-5956.2002.tb00470.xPibernik, R. (2005). Advanced available-to-promise: Classification, selected methods and requirements for operations and inventory management. International Journal of Production Economics, 93-94, 239-252. doi:10.1016/j.ijpe.2004.06.023Pibernik, R. (2006). Managing stock‐outs effectively with order fulfilment systems. Journal of Manufacturing Technology Management, 17(6), 721-736. doi:10.1108/17410380610678765Meyr, H. (2008). Customer segmentation, allocation planning and order promising in make-to-stock production. OR Spectrum, 31(1), 229-256. doi:10.1007/s00291-008-0123-xPibernik, R., & Yadav, P. (2008). Inventory reservation and real-time order promising in a Make-to-Stock system. OR Spectrum, 31(1), 281-307. doi:10.1007/s00291-007-0121-4Venkatadri, U., Srinivasan, A., Montreuil, B., & Saraswat, A. (2006). Optimization-based decision support for order promising in supply chain networks. International Journal of Production Economics, 103(1), 117-130. doi:10.1016/j.ijpe.2005.05.019Xiong, M. H., Tor, S. B., Bhatnagar, R., Khoo, L. P., & Venkat, S. (2006). A DSS approach to managing customer enquiries for SMEs at the customer enquiry stage. International Journal of Production Economics, 103(1), 332-346. doi:10.1016/j.ijpe.2005.08.008Mahdavi Pajouh, F., Xing, D., Zhou, Y., Hariharan, S., Balasundaram, B., Liu, T., & Sharda, R. (2013). A Specialty Steel Bar Company Uses Analytics to Determine Available-to-Promise Dates. Interfaces, 43(6), 503-517. doi:10.1287/inte.2013.0693Yang, W., & Fung, R. Y. K. (2014). An available-to-promise decision support system for a multi-site make-to-order production system. International Journal of Production Research, 52(14), 4253-4266. doi:10.1080/00207543.2013.877612Castiglione, C., Alfieri, A., & Pastore, E. (2018). Decision Support System to balance inventory in customer-driven demand. IFAC-PapersOnLine, 51(11), 1499-1504. doi:10.1016/j.ifacol.2018.08.288Mhiri, E., Jacomino, M., Mangione, F., Vialletelle, P., & Lepelletier, G. (2015). Finite capacity planning algorithm for semiconductor industry considering lots priority. IFAC-PapersOnLine, 48(3), 1598-1603. doi:10.1016/j.ifacol.2015.06.314Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022ALEMANY, M. M. E., A., A., BOZA, A., & FUERTES-MIQUEL, V. S. (2015). A MODEL-DRIVEN DECISION SUPPORT SYSTEM FOR REALLOCATION OF SUPPLY TO ORDERS UNDER UNCERTAINTY IN CERAMIC COMPANIES. Technological and Economic Development of Economy, 21(4), 596-625. doi:10.3846/20294913.2015.1055613Grillo, H., Alemany, M. M. E., & Ortiz, A. (2016). A review of mathematical models for supporting the order promising process under Lack of Homogeneity in Product and other sources of uncertainty. Computers & Industrial Engineering, 91, 239-261. doi:10.1016/j.cie.2015.11.013Grillo, H., Alemany, M. M. E., Ortiz, A., & Mula, J. (2017). A Fuzzy Order Promising Model With Non-Uniform Finished Goods. International Journal of Fuzzy Systems, 20(1), 187-208. doi:10.1007/s40815-017-0317-yZENG, Y.-R., WANG, L., & XU, X.-H. (2015). AN INTEGRATED MODEL TO SELECT AN ERP SYSTEM FOR CHINESE SMALL- AND MEDIUM-SIZED ENTERPRISE UNDER UNCERTAINTY. Technological and Economic Development of Economy, 23(1), 38-58. doi:10.3846/20294913.2015.107274
    corecore