404 research outputs found

    Fast and Accurate Multiclass Inference for MI-BCIs Using Large Multiscale Temporal and Spectral Features

    Full text link
    Accurate, fast, and reliable multiclass classification of electroencephalography (EEG) signals is a challenging task towards the development of motor imagery brain-computer interface (MI-BCI) systems. We propose enhancements to different feature extractors, along with a support vector machine (SVM) classifier, to simultaneously improve classification accuracy and execution time during training and testing. We focus on the well-known common spatial pattern (CSP) and Riemannian covariance methods, and significantly extend these two feature extractors to multiscale temporal and spectral cases. The multiscale CSP features achieve 73.70±\pm15.90% (mean±\pm standard deviation across 9 subjects) classification accuracy that surpasses the state-of-the-art method [1], 70.6±\pm14.70%, on the 4-class BCI competition IV-2a dataset. The Riemannian covariance features outperform the CSP by achieving 74.27±\pm15.5% accuracy and executing 9x faster in training and 4x faster in testing. Using more temporal windows for Riemannian features results in 75.47±\pm12.8% accuracy with 1.6x faster testing than CSP.Comment: Published as a conference paper at the IEEE European Signal Processing Conference (EUSIPCO), 201

    Classification of covariance matrices using a Riemannian-based kernel for BCI applications

    Get PDF
    International audienceThe use of spatial covariance matrix as a feature is investigated for motor imagery EEG-based classification in Brain-Computer Interface applications. A new kernel is derived by establishing a connection with the Riemannian geometry of symmetric positive definite matrices. Different kernels are tested, in combination with support vector machines, on a past BCI competition dataset. We demonstrate that this new approach outperforms significantly state of the art results, effectively replacing the traditional spatial filtering approach

    Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals

    Full text link
    When dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. In this paper, we propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of symmetric positive definite matrices that comes with strong theoretical guarantees. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications

    PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling

    Full text link
    In applied fields where the speed of inference and model flexibility are crucial, the use of Bayesian inference for models with a stochastic process as their prior, e.g. Gaussian processes (GPs) is ubiquitous. Recent literature has demonstrated that the computational bottleneck caused by GP priors or their finite realizations can be encoded using deep generative models such as variational autoencoders (VAEs), and the learned generators can then be used instead of the original priors during Markov chain Monte Carlo (MCMC) inference in a drop-in manner. While this approach enables fast and highly efficient inference, it loses information about the stochastic process hyperparameters, and, as a consequence, makes inference over hyperparameters impossible and the learned priors indistinct. We propose to resolve the aforementioned issue and disentangle the learned priors by conditioning the VAE on stochastic process hyperparameters. This way, the hyperparameters are encoded alongside GP realisations and can be explicitly estimated at the inference stage. We believe that the new method, termed PriorCVAE, will be a useful tool among approximate inference approaches and has the potential to have a large impact on spatial and spatiotemporal inference in crucial real-life applications. Code showcasing the PriorCVAE technique can be accessed via the following link: https://github.com/elizavetasemenova/PriorCVA

    Challenge IEEE-ISBI/TCB : Application of Covariance matrices and wavelet marginals

    Full text link
    This short memo aims at explaining our approach for the challenge IEEE-ISBI on Bone Texture Characterization. In this work, we focus on the use of covariance matrices and wavelet marginals in an SVM classifier.Comment: 9 pages, 4 Figues, 2 Tables, Challenge IEEE-ISBI : Bone Texture Characterizatio

    A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings

    Full text link
    We introduce a novel kernel that models input-dependent couplings across multiple latent processes. The pairwise joint kernel measures covariance along inputs and across different latent signals in a mutually-dependent fashion. A latent correlation Gaussian process (LCGP) model combines these non-stationary latent components into multiple outputs by an input-dependent mixing matrix. Probit classification and support for multiple observation sets are derived by Variational Bayesian inference. Results on several datasets indicate that the LCGP model can recover the correlations between latent signals while simultaneously achieving state-of-the-art performance. We highlight the latent covariances with an EEG classification dataset where latent brain processes and their couplings simultaneously emerge from the model.Comment: 17 pages, 6 figures; accepted to ACML 201

    Riemannian approaches in Brain-Computer Interfaces: a review

    Get PDF
    International audienceAlthough promising from numerous applications, current Brain-Computer Interfaces (BCIs) still suffer from a number of limitations. In particular, they are sensitive to noise, outliers and the non-stationarity of ElectroEncephaloGraphic (EEG) signals, they require long calibration times and are not reliable. Thus, new approaches and tools, notably at the EEG signal processing and classification level, are necessary to address these limitations. Riemannian approaches, spearheaded by the use of covariance matrices, are such a very promising tool slowly adopted by a growing number of researchers. This article, after a quick introduction to Riemannian geometry and a presentation of the BCI-relevant manifolds, reviews how these approaches have been used for EEG-based BCI, in particular for feature representation and learning, classifier design and calibration time reduction. Finally, relevant challenges and promising research directions for EEG signal classification in BCIs are identified, such as feature tracking on manifold or multi-task learning
    • …
    corecore