1,082,171 research outputs found

    Examining Swarm Intelligence-based Feature Selection for Multi-Label Classification

    Get PDF
    Multi-label classification addresses the issues that more than one class label assigns to each instance. Many real-world multi-label classification tasks are high-dimensional due to digital technologies, leading to reduced performance of traditional multi-label classifiers. Feature selection is a common and successful approach to tackling this problem by retaining relevant features and eliminating redundant ones to reduce dimensionality. There is several feature selection that is successfully applied in multi-label learning. Most of those features are wrapper methods that employ a multi-label classifier in their processes. They run a classifier in each step, which requires a high computational cost, and thus they suffer from scalability issues. To deal with this issue, filter methods are introduced to evaluate the feature subsets using information-theoretic mechanisms instead of running classifiers. This paper aims to provide a comprehensive review of different methods of feature selection presented for the tasks of multi-label classification. To this end, in this review, we have investigated most of the well-known and state-of-the-art methods. We then provided the main characteristics of the existing multi-label feature selection techniques and compared them analytically

    A taxonomic look at instance-based stream classifiers

    Get PDF
    Large numbers of data streams are today generated in many fields. A key challenge when learning from such streams is the problem of concept drift. Many methods, including many prototype methods, have been proposed in recent years to address this problem. This paper presents a refined taxonomy of instance selection and generation methods for the classification of data streams subject to concept drift. The taxonomy allows discrimination among a large number of methods which pre-existing taxonomies for offline instance selection methods did not distinguish. This makes possible a valuable new perspective on experimental results, and provides a framework for discussion of the concepts behind different algorithm-design approaches. We review a selection of modern algorithms for the purpose of illustrating the distinctions made by the taxonomy. We present the results of a numerical experiment which examined the performance of a number of representative methods on both synthetic and real-world data sets with and without concept drift, and discuss the implications for the directions of future research in light of the taxonomy. On the basis of the experimental results, we are able to give recommendations for the experimental evaluation of algorithms which may be proposed in the future.project RPG-2015-188 funded by The Leverhulme Trust, UK, and TIN 2015-67534-P from the Spanish Ministry of Economy and Competitiveness. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731593

    Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review

    Get PDF
    This paper provides a review of methodological advancements in the evaluation of heterogeneous treatment effect models based on instrumental variable (IV) methods. We focus on models that achieve identification through a monotonicity assumption on the selection equation and analyze local average and quantile treatment effects for the subpopulation of compliers. We start with a comprehensive discussion of the binary treatment and binary instrument case which is relevant for instance in randomized experiments with imperfect compliance. We then review extensions to identification and estimation with covariates, multi-valued and multiple treatments and instruments, outcome attrition and measurement error, and the identification of direct and indirect treatment effects, among others. We also discuss testable implications and possible relaxations of the IV assumptions, approaches to extrapolate from local to global treatment effects, and the relationship to other IV approaches

    Abutilon theophrasti’s Resilience against Allelochemical-Based Weed Management in Sustainable Agriculture – Due to Collection of Highly Advantageous Microorganisms?

    Get PDF
    Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti

    Efficient XAI Techniques: A Taxonomic Survey

    Full text link
    Recently, there has been a growing demand for the deployment of Explainable Artificial Intelligence (XAI) algorithms in real-world applications. However, traditional XAI methods typically suffer from a high computational complexity problem, which discourages the deployment of real-time systems to meet the time-demanding requirements of real-world scenarios. Although many approaches have been proposed to improve the efficiency of XAI methods, a comprehensive understanding of the achievements and challenges is still needed. To this end, in this paper we provide a review of efficient XAI. Specifically, we categorize existing techniques of XAI acceleration into efficient non-amortized and efficient amortized methods. The efficient non-amortized methods focus on data-centric or model-centric acceleration upon each individual instance. In contrast, amortized methods focus on learning a unified distribution of model explanations, following the predictive, generative, or reinforcement frameworks, to rapidly derive multiple model explanations. We also analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios. Finally, we summarize the challenges of deploying XAI acceleration methods to real-world scenarios, overcoming the trade-off between faithfulness and efficiency, and the selection of different acceleration methods.Comment: 15 pages, 3 figure

    Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, a review

    Get PDF
    Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccin

    Sentiment classification with concept drift and imbalanced class distributions

    Get PDF
    Document-level sentiment classification aims to automate the task of classifying a textual review, which is given on a single topic, as expressing a positive or negative sentiment. In general, people express their opinions towards an entity based on their characteristics which may change over time. User‘s opinions are changed due to evolution of target entities over time. However, the existing sentiment classification approaches did not considered the evolution of User‘s opinions. They assumed that instances are independent, identically distributed and generated from a stationary distribution, while generated from a stream distribution. They used the static classification model that builds a classifier using a training set without considering the time that reviews are posted. However, time may be very useful as an important feature for classification task. In this paper, a stream sentiment classification framework is proposed to deal with concept drift and imbalanced data distribution using ensemble learning and instance selection methods. The experimental results show the effectiveness of the proposed method in compared with static sentiment classification

    Machine learning methods for the study of cybersickness: a systematic review

    Get PDF
    This systematic review offers a world-first critical analysis of machine learning methods and systems, along with future directions for the study of cybersickness induced by virtual reality (VR). VR is becoming increasingly popular and is an important part of current advances in human training, therapies, entertainment, and access to the metaverse. Usage of this technology is limited by cybersickness, a common debilitating condition experienced upon VR immersion. Cybersickness is accompanied by a mix of symptoms including nausea, dizziness, fatigue and oculomotor disturbances. Machine learning can be used to identify cybersickness and is a step towards overcoming these physiological limitations. Practical implementation of this is possible with optimised data collection from wearable devices and appropriate algorithms that incorporate advanced machine learning approaches. The present systematic review focuses on 26 selected studies. These concern machine learning of biometric and neuro-physiological signals obtained from wearable devices for the automatic identification of cybersickness. The methods, data processing and machine learning architecture, as well as suggestions for future exploration on detection and prediction of cybersickness are explored. A wide range of immersion environments, participant activity, features and machine learning architectures were identified. Although models for cybersickness detection have been developed, literature still lacks a model for the prediction of first-instance events. Future research is pointed towards goal-oriented data selection and labelling, as well as the use of brain-inspired spiking neural network models to achieve better accuracy and understanding of complex spatio-temporal brain processes related to cybersickness

    Towards self-verification in finite difference code generation

    Get PDF
    Code generation from domain-specific languages is becoming increasingly popular as a method to obtain optimised low-level code that performs well on a given platform and for a given problem instance. Ensuring the correctness of generated codes is crucial. At the same time, testing or manual inspection of the code is problematic, as the generated code can be complex and hard to read. Moreover, the generated code may change depending on the problem type, domain size, or target platform, making conventional code review or testing methods impractical. As a solution, we propose the integration of formal verification tools into the code generation process. We present a case study in which the CIVL verification tool is combined with the Devito finite difference framework that generates optimised stencil code for PDE solvers from symbolic equations. We show a selection of properties of the generated code that can be automatically specified and verified during the code generation process. Our approach allowed us to detect a previously unknown bug in the Devito code generation tool
    corecore