4,959 research outputs found

    Hyperbolic polyhedral surfaces with regular faces

    Full text link
    We study hyperbolic polyhedral surfaces with faces isometric to regular hyperbolic polygons satisfying that the total angles at vertices are at least 2Ï€.2\pi. The combinatorial information of these surfaces is shown to be identified with that of Euclidean polyhedral surfaces with negative combinatorial curvature everywhere. We prove that there is a gap between areas of non-smooth hyperbolic polyhedral surfaces and the area of smooth hyperbolic surfaces. The numerical result for the gap is obtained for hyperbolic polyhedral surfaces, homeomorphic to the double torus, whose 1-skeletons are cubic graphs.Comment: 23 pages, 3 figures. arXiv admin note: text overlap with arXiv:1804.1103

    Negative curvature in graphical small cancellation groups

    Full text link
    We use the interplay between combinatorial and coarse geometric versions of negative curvature to investigate the geometry of infinitely presented graphical Gr′(1/6)Gr'(1/6) small cancellation groups. In particular, we characterize their 'contracting geodesics', which should be thought of as the geodesics that behave hyperbolically. We show that every degree of contraction can be achieved by a geodesic in a finitely generated group. We construct the first example of a finitely generated group GG containing an element gg that is strongly contracting with respect to one finite generating set of GG and not strongly contracting with respect to another. In the case of classical C′(1/6)C'(1/6) small cancellation groups we give complete characterizations of geodesics that are Morse and that are strongly contracting. We show that many graphical Gr′(1/6)Gr'(1/6) small cancellation groups contain strongly contracting elements and, in particular, are growth tight. We construct uncountably many quasi-isometry classes of finitely generated, torsion-free groups in which every maximal cyclic subgroup is hyperbolically embedded. These are the first examples of this kind that are not subgroups of hyperbolic groups. In the course of our analysis we show that if the defining graph of a graphical Gr′(1/6)Gr'(1/6) small cancellation group has finite components, then the elements of the group have translation lengths that are rational and bounded away from zero.Comment: 40 pages, 14 figures, v2: improved introduction, updated statement of Theorem 4.4, v3: new title (previously: "Contracting geodesics in infinitely presented graphical small cancellation groups"), minor changes, to appear in Groups, Geometry, and Dynamic

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer
    • …
    corecore