1,631 research outputs found

    Concentration phenomena for a fractional Schr\"odinger-Kirchhoff type equation

    Full text link
    In this paper we deal with the multiplicity and concentration of positive solutions for the following fractional Schr\"odinger-Kirchhoff type equation \begin{equation*} M\left(\frac{1}{\varepsilon^{3-2s}} \iint_{\mathbb{R}^{6}}\frac{|u(x)- u(y)|^{2}}{|x-y|^{3+2s}} dxdy + \frac{1}{\varepsilon^{3}} \int_{\mathbb{R}^{3}} V(x)u^{2} dx\right)[\varepsilon^{2s} (-\Delta)^{s}u+ V(x)u]= f(u) \, \mbox{in} \mathbb{R}^{3} \end{equation*} where ε>0\varepsilon>0 is a small parameter, s∈(34,1)s\in (\frac{3}{4}, 1), (−Δ)s(-\Delta)^{s} is the fractional Laplacian, MM is a Kirchhoff function, VV is a continuous positive potential and ff is a superlinear continuous function with subcritical growth. By using penalization techniques and Ljusternik-Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum.Comment: Mathematical Methods in the Applied Sciences (2017

    Multiplicity and concentration of solutions for a fractional Kirchhoff equation with magnetic field and critical growth

    Full text link
    We investigate the existence, multiplicity and concentration of nontrivial solutions for the following fractional magnetic Kirchhoff equation with critical growth: \begin{equation*} \left(a\varepsilon^{2s}+b\varepsilon^{4s-3} [u]_{A/\varepsilon}^{2}\right)(-\Delta)_{A/\varepsilon}^{s}u+V(x)u=f(|u|^{2})u+|u|^{\2-2}u \quad \mbox{ in } \mathbb{R}^{3}, \end{equation*} where ε\varepsilon is a small positive parameter, a,b>0a, b>0 are fixed constants, s∈(34,1)s\in (\frac{3}{4}, 1), 2s∗=63−2s2^{*}_{s}=\frac{6}{3-2s} is the fractional critical exponent, (−Δ)As(-\Delta)^{s}_{A} is the fractional magnetic Laplacian, A:R3→R3A:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3} is a smooth magnetic potential, V:R3→RV:\mathbb{R}^{3}\rightarrow \mathbb{R} is a positive continuous potential verifying the global condition due to Rabinowitz \cite{Rab}, and f:R→Rf:\mathbb{R}\rightarrow \mathbb{R} is a C1C^{1} subcritical nonlinearity. Due to the presence of the magnetic field and the critical growth of the nonlinearity, several difficulties arise in the study of our problem and a careful analysis will be needed. The main results presented here are established by using minimax methods, concentration compactness principle of Lions \cite{Lions}, a fractional Kato's type inequality and the Ljusternik-Schnirelmann theory of critical points.Comment: arXiv admin note: text overlap with arXiv:1808.0929

    Combined effects for non-autonomous singular biharmonic problems

    Full text link
    We study the existence of nontrivial weak solutions for a class of generalized p(x)p(x)-biharmonic equations with singular nonlinearity and Navier boundary condition. The proofs combine variational and topological arguments. The approach developed in this paper allows for the treatment of several classes of singular biharmonic problems with variable growth arising in applied sciences, including the capillarity equation and the mean curvature problem
    • …
    corecore