7 research outputs found

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Proceedings of the Third Infrared Detector Technology Workshop

    Get PDF
    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    Get PDF
    In dieser Arbeit wird die Erzeugung und Untersuchung wechselwirkender Ytterbium-Quantengase mit zwei elektronischen Orbitalen in optischen Gittern präsentiert. Entartete Fermigase aus Ytterbium oder anderen erdalkaliähnlichen Elementen wurden in jüngster Zeit als Modellsysteme für orbitale Phänomene in der Festkörperphysik herangezogen, wie z.B. die Kondoabschirmung, schwere Fermionen und kolossalen magnetischen Widerstand. Für diese Gase wurde des Weiteren eine hohen SU(N) Symmetrie vorhergesagt, die aus der starken Entkopplung des Kernspins resultiert, und die Erzeugung neuer exotischer Aggregatzustände ermöglicht. Das SU(N) Hubbard-Modell mit zwei Orbitalen sowie interorbitaler Spinaustauschwechselwirkung lässt sich mit Hilfe der beiden niedrigsten (meta-)stabilen elektronischen Zustände realisieren, welche dabei die Rolle der Elektronen aus unterschiedlichen Orbitalen eines Festkörpers einnehmen. Die Wechselwirkungen in einer entarteten Mischung verschiedener Spinzustände von Yb-173 mit zwei Orbitalen werden durch die Anregung in den metastabilen Zustand in einem zustandsunabhängigen Gitter untersucht. Alle Streukanäle für die zwei Orbitale werden charakterisiert und die SU(N=6)-Symmetrie wird innerhalb der experimentellen Unsicherheiten nachgewiesen. Von herausragender Bedeutung ist der Nachweis einer sehr starken Spinaustauschwechselwirkung zwischen den zwei Orbitalen, wobei der dazugehörige Austauschprozess anhand dynamischen Ausgleichs der Spinpolarizierung zwischen verschiedenen Orbitalen beobachtet wird. Ermöglicht wird dies durch die Implementierung präzisionsspektroskopischer Verfahren sowie die vollständige, kohärente Kontrolle der Besetzung des metasabilen Zustandes. Die Verwirklichung eines SU(N)-symmetrischen Gases mit Spinaustauschwechselwirkung, des grundlegenden Bausteins für orbitalen Quantenmagnetismus, ist ein entscheidender Schritt in Richtung der Simulation von wichtigen Vielteilchenmodellen, wie dem Kondo- Gittermodell.This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N ) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N = 6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model
    corecore