545 research outputs found

    PyFrac: A planar 3D hydraulic fracture simulator

    Full text link
    Fluid driven fractures propagate in the upper earth crust either naturally or in response to engineered fluid injections. The quantitative prediction of their evolution is critical in order to better understand their dynamics as well as to optimize their creation. We present a Python implementation of an open-source hydraulic fracture propagation simulator based on the implicit level set algorithm originally developed by Peirce & Detournay (2008) -- "An implicit level set method for modeling hydraulically driven fractures". Comp. Meth. Appl. Mech. Engng, (33-40):2858--2885. This algorithm couples a finite discretization of the fracture with the use of the near tip asymptotic solutions of a steadily propagating semi-infinite hydraulic fracture. This allows to resolve the multi-scale processes governing hydraulic fracture growth accurately, even with relatively coarse meshes. We present an overview of the mathematical formulation, the numerical scheme and the details of our implementation. A series of problems including a radial hydraulic fracture verification benchmark, the propagation of a height contained hydraulic fracture, the lateral spreading of a magmatic dyke and the handling of fracture closure are presented to demonstrate the capabilities, accuracy and robustness of the implemented algorithm

    A localized orthogonal decomposition method for semi-linear elliptic problems

    Get PDF
    In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of order H |log H| where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size. To solve the arising equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space

    Numerical homogenization beyond scale separation

    Get PDF

    Reactive Flows in Deformable, Complex Media

    Get PDF
    Many processes of highest actuality in the real life are described through systems of equations posed in complex domains. Of particular interest is the situation when the domain is variable, undergoing deformations that depend on the unknown quantities of the model. Such kind of problems are encountered as mathematical models in the subsurface, or biological systems. Such models include various processes at different scales, and the key issue is to integrate the domain deformation in the multi-scale context. Having this as the background theme, this workshop focused on novel techniques and ideas in the analysis, the numerical discretization and the upscaling of such problems, as well as on applications of major societal relevance today
    • …
    corecore