949 research outputs found

    Protecting Surface Transportation Systems and Patrons from Terrorist Activities, Research Report 94-04

    Get PDF
    Contemporary terrorists have made public transportation a new theater of operations. Algerian extremists set off bombs on the subways of Paris in 1995 and 1996; the Irish Republican Army has waged a long running terrorist campaign against Britain’s passenger trains and London’s subways; Palestinian terrorists have carried out suicide bombings on Israel’s buses; and an individualor a group calling itself “Sons of the Gestapo” derailed a passenger train in Arizona in 1995. Islamic extremists planned to set off car bombs in New York’s tunnels and bridges in 1993 and in 1997 they plotted suicide bombings in New York subways. The nerve gas attack on Tokyo’s subways by members of the Aum Shinrikyo sect in 1995 raised the specter that terrorists in the future might resort to weapons of mass destruction to which public transportation is uniquely vulnerable. In order to effectively meet the threat posed by terrorism and other forms of violent crime, it is essential that transportation system operators have a thorough understanding of the security measures employed elsewhere, especially by those transportation entities that have suffered terrorist attacks or that confront high threat levels. This volume reports on the first phase of a continuing research effort carried out by the Norman Y. Mineta International Institute for Surface Transportation Policy Studies (IISTPS) on behalf of the U.S. Department of Transportation. It comprises a chronology of attacks on surface transportation systems; four case studies of transportation security measures (in Paris, Atlanta, and New York, and at Amtrak); security surveys of nine additional cities in the United States; and an annotated bibliography of current literature on the topic

    Using Computer Simulation Modeling To Evaluate The Bioterrorismresponse Plan At A Local Hospital Facility

    Get PDF
    The terrorist attacks of September 11th, 2001 and the subsequent anthrax mail attack have forced health care administrators and policy makers to place a new emphasis on disaster planning at hospital facilities--specifically bioterrorism planning. Yet how does one truly prepare for the unpredictable? In spite of accreditation requirements, which demand hospitals put in to place preparations to deal with bioterrorism events, a recent study from the General Accounting Office (GAO) concluded that most hospitals are still not capable of dealing with such threats (Gonzalez, 2004). This dissertation uses computer simulation modeling to test the effectiveness of bioterrorism planning at a local hospital facility in Central Florida, Winter Park Memorial Hospital. It is limited to the response plan developed by the hospital\u27s Emergency Department. It evaluates the plan\u27s effectiveness in dealing with an inhalational anthrax attack. Using Arena computer simulation software, and grounded within the theoretical framework of Complexity Science, we were able to test the effectiveness of the response plan in relation to Emergency Department bed capacity. Our results indicated that the response plan\u27s flexibility was able to accommodate an increased patient load due to an attack, including an influx of the worried well. Topics of future work and study are proposed

    Disaster management and its economic implications

    Get PDF
    Das Ziel dieser Arbeit ist es, aktuelle Forschungsschwerpunkte im Bereich des Katastrophenmanagements in der Operational Research Literatur aufzuzeigen. Katastrophenmanagement umfasst in diesem Zusammenhang einerseits Naturkatastrophen wie geophysikalische und hydro-meteorologische Katastrophen, technologische Katastrophen wie industrielle Unfälle, Transportunfälle und sonstige Unfälle, und andererseits die verschiedenen Formen des Terrorismus, allgemeinen Terrorismus sowie Bioterrorismus. Da die Anzahl und das Ausmaß von Katastrophen immer weiter zunehmen ist auch eine immer größere Notwendigkeit für die Entwicklung, den Einsatz und die wirtschaftliche Beurteilung der jeweiligen Strategien gegeben. Der erste Teil dieser Arbeit gibt einen Überblick über die Literatur im Bereich des Katastrophenmanagements und umfasst Simulation, Katastrophenmanagement in Krankenhäusern und die Rolle von Versicherungen im Katastrophenmanagementprozess. Im zweiten Teil wird eine Taxonomie entwickelt, deren Kategorien auf den Modellen und Ergebnissen der Literatur beruhen. Einerseits werden allgemeine Modelleigenschaften wie die Ebene im Katastrophenmanagementprozess, der Modelltyp und die Anwendungsgebiete der Modelle untersucht. Andererseits stellen die Art der Intervention und die Anwendbarkeit für die unterschiedlichen Katastrophenklassen weitere Kategorien der Taxonomie dar. Es wurden 90 Artikel, die beispielhaft für die Forschungsrichtungen im Bereich des Katastrophenmanagements der letzten 25 Jahre stehen, ausgewählt, und entsprechend den jeweiligen Kategorien der Taxonomie zugeordnet. Das Hauptaugenmerk der Taxonomie liegt auf der wirtschaftlichen Analyse, die wirksamkeitsbezogene, ressourcenbezogene und kostenbezogene Parameter umfasst. Es wird gezeigt ob und welche wirtschaftliche Analyse wie beispielsweise die Kosten-Nutzwert- Analyse, die Kosten-Wirksamkeits-Analyse und die Kosten-Nutzen-Analyse angewendet wird um die in den Artikeln beschriebenen Interventionen zu evaluieren. Es wird gezeigt, dass erhebliche Verbesserungen für die verschiedenen Katastrophentypen und in den verschiedenen Situationen erzielt werden können. Eingeschränkte Datenverfügbarkeit schränkt in vielen Fällen die Einsetzbarkeit der Modelle in realen Situationen ein. Im Allgemeinen ist erkennbar, dass Kooperation und Koordination zwischen den beteiligten Einheiten ausschlaggebend für den zeitgerechten und effizienten Einsatz der knappen Ressourcen sind. Oftmals erzielt der gemeinsame Einsatz mehrerer Maßnahme ein deutlich besseres Ergebnis als der Einsatz von lediglich einem einzigen Instrument. Die Taxonomie unterstreicht dass trotz der großen Fülle an Literatur im Bereich des Katastrophenmanagements nur wenige Autoren auf die Kosten-Nutzwert-Analyse, die Kosten-Wirksamkeits-Analyse und die Kosten-Nutzen-Analyse als Hilfsmittel zur wirtschaftlichen Analyse zurückgreifen. In Zukunft, um Interventionen erfolgreich evaluieren zu können oder die beste aus mehreren Interventionen bestimmen zu können wird es immer wichtiger werden, diese Art von wirtschaftlichen Analysen anzuwenden.This thesis intends to demonstrate current research directions in the field of disaster management in the Operational Research literature. Disaster management in this context comprises the management of natural, such as geophysical and hydro-meteorological, and technological disasters, such as industrial accidents, transportation accidents, and miscellaneous accidents, as well as the management of the different terrorism forms, general terrorism and bioterrorism. As the occurrence of disasters is getting more and more frequent and the accumulated loss of these events is getting higher and higher, there is a strong need for the development, implication and economic evaluation of strategies to counter these disasters. In the first part of the thesis, a general overview of the literature is given, including a focus on simulation, disaster management in hospitals, and the role of insurances in the disaster management process. The second part encompasses the taxonomy which focuses on models and outcomes presented in the literature. As a result of the review of the literature, appropriate categories for the disaster management taxonomy are derived. On the one hand, an overview of general model features, i.e., the level of disaster management, model type and methods of application is given. On the other hand, the type of intervention used and the practicability for different disaster types are discussed. 90 papers, illustrative main examples of the research directions of the last 25 years, were selected for deeper investigation and classified according to the main criteria analyzed in the articles. The main focus of the taxonomy lies on the economic analysis, which encompasses effectiveness-related, resource-related, and cost-related parameters and shows the type of economic analysis used in the literature. We analyze whether economic analysis, i.e., costutility, cost-effectiveness, and cost-benefit are used to investigate different interventions and what type of analysis has been chosen by the authors. Policy implications and results show that considerable improvements can be achieved for different disastrous events and in different situations. Limited data availability constrains the outcomes of the models and their applicability to real-world situations. In general, cooperation and coordination of the entities involved are crucial to guarantee timely and efficient assignment of scarce resources. Furthermore, different authors confirm that a combination of various measures often achieves a better outcome than if tools are used autonomously. The taxonomy has underlined that although there exists a vast disaster management literature dealing with various problems related to mitigation, preparedness, response and recovery from disasters, there are only a few authors evaluating the actions taken through economic analyses such cost-utility, cost-effectiveness, or cost-benefit analysis. In the future, to be able to evaluate interventions, or to figure out the most effective intervention among several interventions, it is crucial to stronger rely on the abovementioned economic analyses

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Mamaroneck EMS and the Continuity of Operations: Homeland Security on a Local Level

    Get PDF
    The definition of homeland security and all that it encompasses has been an ongoing discussion since the events of 9/11. As a homeland security professional it has become clear to me that homeland security is not only a federal obligation, but a local priority as well. All events are local and the government cannot be solely responsible for the preparation, response, and resilience of each individual community. The Village of Mamaroneck is a small jurisdiction approximately 30 miles from New York City. The prime threat this Village has faced is inclement weather and severe flooding due to the multiple floodplains scattered around the 32 square miles that make up the community. However, due to the rising tensions and hardships around the world, it is imperative that the Village of Mamaroneck be prepared to deal with unique situations that may affect the safety and prosperity of our residents. The following research has been organized into a unified strategic plan for the continuity of operations for Mamaroneck Emergency Medical Services (MEMS). This plan is formatted to better prepare MEMS for unfamiliar situations and enhance our response and resiliency if ever faced with a catastrophic event. Although it is a starting point, this document produces optimism that MEMS will be able to build their operation into a prototype for other EMS agencies in surrounding jurisdictions

    State of Arizona emergency response and recovery plan

    Get PDF
    tableOfContents: Introduction -- Basic plan -- Emergency support function annexes -- Support annexes -- Incident annexes -- General Informationabstract: The State Emergency Response and Recovery Plan (SERRP) is a guide to how the State of Arizona conducts all hazards response. It is built upon National Response Framework as a scalable, flexible, and adaptable coordinating structures to align key roles and responsibilities, linking all levels of government, nongovernmental organizations, and the private sector. It is intended to capture specific authorities and best practices for managing incidents that range from the serious but purely local, to large-scale terrorist attacks or catastrophic natural disaster

    Estimating the efficacy of mass rescue operations in ocean areas with vehicle routing models and heuristics

    Get PDF
    Tese de doutoramento, Estatística e Investigação Operacional (Optimização), Universidade de Lisboa, Faculdade de Ciências, 2018Mass rescue operations (MRO) in maritime areas, particularly in ocean areas, are a major concern for the authorities responsible for conducting search and rescue (SAR) activities. A mass rescue operation can be defined as a search and rescue activity characterized by the need for immediate assistance to a large number of persons in distress, such that the capabilities normally available to search and rescue are inadequate. In this dissertation we deal with a mass rescue operation within ocean areas and we consider the problem of rescuing a set of survivors following a maritime incident (cruise ship, oil platform, ditched airplane) that are drifting in time. The recovery of survivors is performed by nearby ships and helicopters. We also consider the possibility of ships capable of refuelling helicopters while hovering which can extend the range to which survivors can be rescued. A linear binary integer formulation is presented along with an application that allows users to build instances of the problem. The formulation considers a discretization of time within a certain time step in order to assess the possibility of travelling along different locations. The problem considered in this work can be perceived as an extension of the generalized vehicle routing problem (GVRP) with a profit stance since we may not be able to recover all of the survivors. We also present a look ahead approach, based on the pilot method, to the problem along with some optimal results using state of the art Mixed-integer linear programming solvers. Finally, the efficacy of the solution from the GVRP is estimated for a set of scenarios that combine incident severity, location, traffic density for nearby ships and SAR assets availability and location. Using traffic density maps and the estimated MRO efficacy, one can produce a combined vulnerability map to ascertain the quality of response to each scenario.Marinha Portuguesa, Plano de Atividades de Formação Nacional (PAFN

    Exercise Handbook: What Transportation Security and Emergency Preparedness Leaders Need to Know to Improve Emergency Preparedness, MTI Report 12-08

    Get PDF
    The U.S. Department of Homeland Security (DHS) has provided extensive general guidance on developing training and exercise programs for public entities, but little had been done to focus that material on the transportation sector specifically. Transportation sector emergency managers have noted that there should be specific guidance for developing exercises that are focused on the operational work of their agencies, in addition to the Logistics Section functions that are usually the focus of transportation sector entities in multi-agency, multi-jurisdiction exercises. The first section of his report provides information on federal training and exercise requirements for transportation sector entities. It summarizes the changes to emergency management programs and requirements that grew out of the Presidential Policy Directive-8 (PPD-8) issuance in early 2011, and the challenges of adult training. The second section is a Homeland Security Exercise and Evaluation Program (HSEEP)-compliant practical handbook using the project management approach that guides transportation sector staff in the creation, development, implementation and wrap-up of federally mandated exercises. It includes scenarios and implementation guidance based on the actual experiences and work of the transportation sector

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones
    • …
    corecore